## The W. Thurston algorithm applied to real polynomial maps

HTML articles powered by AMS MathViewer

- by Araceli Bonifant, John Milnor and Scott Sutherland PDF
- Conform. Geom. Dyn.
**25**(2021), 179-199 Request permission

## Abstract:

This note will describe an effective procedure for constructing critically finite real polynomial maps with specified combinatorics.## References

- Laurent Bartholdi and Volodymyr Nekrashevych,
*Thurston equivalence of topological polynomials*, Acta Math.**197**(2006), no. 1, 1–51. MR**2285317**, DOI 10.1007/s11511-006-0007-3 - L. Bartholdi,
*IMG, Computations with iterated monodromy groups, a GAP package, version 0.1.1*. laurentbartholdi.github.io/img/ - Ben Bielefeld, Yuval Fisher, and John Hubbard,
*The classification of critically preperiodic polynomials as dynamical systems*, J. Amer. Math. Soc.**5**(1992), no. 4, 721–762. MR**1149891**, DOI 10.1090/S0894-0347-1992-1149891-3 - Araceli Bonifant, Jan Kiwi, and John Milnor,
*Cubic polynomial maps with periodic critical orbit. II. Escape regions*, Conform. Geom. Dyn.**14**(2010), 68–112. MR**2600536**, DOI 10.1090/S1088-4173-10-00204-3 - A. Bonifant, J. Milnor, and S. Sutherland,
*The W. Thurston Algorithm for Real Quadratic Rational Maps*, arXiv:2009.10147 [math.DS], 2020. - Henk Bruin and Dierk Schleicher,
*Admissibility of kneading sequences and structure of Hubbard trees for quadratic polynomials*, J. Lond. Math. Soc. (2)**78**(2008), no. 2, 502–522. MR**2439637**, DOI 10.1112/jlms/jdn033 - Arnaud Chéritat,
*Tan Lei and Shishikura’s example of non-mateable degree 3 polynomials without a Levy cycle*, Ann. Fac. Sci. Toulouse Math. (6)**21**(2012), no. 5, 935–980 (English, with English and French summaries). MR**3088263**, DOI 10.5802/afst.1358 - Peter Deuflhard,
*Newton methods for nonlinear problems*, Springer Series in Computational Mathematics, vol. 35, Springer, Heidelberg, 2011. Affine invariance and adaptive algorithms; First softcover printing of the 2006 corrected printing. MR**2893875**, DOI 10.1007/978-3-642-23899-4 - Adrien Douady and John H. Hubbard,
*A proof of Thurston’s topological characterization of rational functions*, Acta Math.**171**(1993), no. 2, 263–297. MR**1251582**, DOI 10.1007/BF02392534 - H. B. Fine,
*On Newton’s method of approximation*, Proc. Nat. Acad. Sci. USA**2**(1916) 546–552. - Suzanne Hruska Boyd and Christian Henriksen,
*The Medusa algorithm for polynomial matings*, Conform. Geom. Dyn.**16**(2012), 161–183. MR**2943594**, DOI 10.1090/S1088-4173-2012-00245-7 - John Hamal Hubbard and Barbara Burke Hubbard,
*Vector calculus, linear algebra, and differential forms*, Prentice Hall, Inc., Upper Saddle River, NJ, 1999. A unified approach. MR**1657732** - John H. Hubbard and Dierk Schleicher,
*The spider algorithm*, Complex dynamical systems (Cincinnati, OH, 1994) Proc. Sympos. Appl. Math., vol. 49, Amer. Math. Soc., Providence, RI, 1994, pp. 155–180. MR**1315537**, DOI 10.1090/psapm/049/1315537 - A. Hurwitz,
*Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten*, Math. Ann.**39**(1891), no. 1, 1–60 (German). MR**1510692**, DOI 10.1007/BF01199469 - W. Jung,
*The Thurston algorithm for quadratic matings*. arXiv:1706.04177, 2017. - L. V. Kantorovič,
*On Newton’s method*, Trudy Mat. Inst. Steklov.**28**(1949), 104–144 (Russian). MR**0038560** - John Milnor,
*On Lattès maps*, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR**2348953**, DOI 10.4171/011-1/1 - John Milnor and Charles Tresser,
*On entropy and monotonicity for real cubic maps*, Comm. Math. Phys.**209**(2000), no. 1, 123–178. With an appendix by Adrien Douady and Pierrette Sentenac. MR**1736945**, DOI 10.1007/s002200050018 - Alfredo Poirier,
*Critical portraits for postcritically finite polynomials*, Fund. Math.**203**(2009), no. 2, 107–163. MR**2496235**, DOI 10.4064/fm203-2-2 - Alfredo Poirier,
*Hubbard trees*, Fund. Math.**208**(2010), no. 3, 193–248. MR**2650982**, DOI 10.4064/fm208-3-1 - Nikita Selinger,
*Thurston’s pullback map on the augmented Teichmüller space and applications*, Invent. Math.**189**(2012), no. 1, 111–142. MR**2929084**, DOI 10.1007/s00222-011-0362-3 - Dylan P. Thurston,
*From rubber bands to rational maps: a research report*, Res. Math. Sci.**3**(2016), Paper No. 15, 49. MR**3500499**, DOI 10.1186/s40687-015-0039-4

## Additional Information

**Araceli Bonifant**- Affiliation: Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881
- MR Author ID: 600241
- Email: bonifant@uri.edu
**John Milnor**- Affiliation: Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New York 11794
- MR Author ID: 125060
- Email: jack@math.stonybrook.edu
**Scott Sutherland**- Affiliation: Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New York 11794
- MR Author ID: 348189
- ORCID: 0000-0001-9129-3344
- Email: scott@math.stonybrook.edu
- Received by editor(s): May 15, 2020
- Received by editor(s) in revised form: August 20, 2021
- Published electronically: October 29, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**25**(2021), 179-199 - MSC (2020): Primary 37F10, 37F20, 37E05, 37E25, 37M99
- DOI: https://doi.org/10.1090/ecgd/365
- MathSciNet review: 4333771