Zeta functions and counting finite p-groups
Author:
Marcus du Sautoy
Journal:
Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 112-122
MSC (1991):
Primary 20D15, 11M41; Secondary 03C10, 14E15, 11M45
DOI:
https://doi.org/10.1090/S1079-6762-99-00069-4
Published electronically:
August 30, 1999
MathSciNet review:
1715428
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We announce proofs of a number of theorems concerning finite $p$-groups and nilpotent groups. These include: (1) the number of $p$-groups of class $c$ on $d$ generators of order $p^n$ satisfies a linear recurrence relation in $n$; (2) for fixed $n$ the number of $p$-groups of order $p^n$ as one varies $p$ is given by counting points on certain varieties mod $p$; (3) an asymptotic formula for the number of finite nilpotent groups of order $n$; (4) the periodicity of trees associated to finite $p$-groups of a fixed coclass (Conjecture P of Newman and O’Brien). The second result offers a new approach to Higman’s PORC conjecture. The results are established using zeta functions associated to infinite groups and the concept of definable $p$-adic integrals.
- J. Denef, The rationality of the Poincaré series associated to the $p$-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR 751129, DOI https://doi.org/10.1007/BF01389133
- J. Denef and L. van den Dries, $p$-adic and real subanalytic sets, Ann. of Math. (2) 128 (1988), no. 1, 79–138. MR 951508, DOI https://doi.org/10.2307/1971463
- J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no.1, 201–232.
- Jan Denef and François Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505–537. MR 1618144
- Marcus P. F. du Sautoy, Finitely generated groups, $p$-adic analytic groups and Poincaré series, Ann. of Math. (2) 137 (1993), no. 3, 639–670. MR 1217350, DOI https://doi.org/10.2307/2946534
- M.P.F. du Sautoy, $p$-groups, coclass, model theory: a proof of conjecture P, preprint (Cambridge).
- M.P.F. du Sautoy, Counting finite $p$-groups and nilpotent groups, preprint (Cambridge).
- M.P.F. du Sautoy and F.J. Grunewald, Analytic properties of zeta functions and subgroup growth, preprint (M.P.I. Bonn).
- M.P.F. du Sautoy and F.J. Grunewald, Counting subgroups of finite index in nilpotent groups of class 2. In preparation.
- M.P.F. du Sautoy and F.J. Grunewald, Uniformity for 2 generator free nilpotent groups. In preparation.
- F. J. Grunewald, D. Segal, and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), no. 1, 185–223. MR 943928, DOI https://doi.org/10.1007/BF01393692
- Graham Higman, Enumerating $p$-groups. I. Inequalities, Proc. London Math. Soc. (3) 10 (1960), 24–30. MR 113948, DOI https://doi.org/10.1112/plms/s3-10.1.24
- Graham Higman, Enumerating $p$-groups. II. Problems whose solution is PORC, Proc. London Math. Soc. (3) 10 (1960), 566–582. MR 123605, DOI https://doi.org/10.1112/plms/s3-10.1.566
- C. R. Leedham-Green, The structure of finite $p$-groups, J. London Math. Soc. (2) 50 (1994), no. 1, 49–67. MR 1277754, DOI https://doi.org/10.1112/jlms/50.1.49
- M. F. Newman and E. A. O’Brien, Classifying $2$-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), no. 1, 131–169. MR 1458332, DOI https://doi.org/10.1090/S0002-9947-99-02124-8
- C. R. Leedham-Green, The structure of finite $p$-groups, J. London Math. Soc. (2) 50 (1994), no. 1, 49–67. MR 1277754, DOI https://doi.org/10.1112/jlms/50.1.49
- Charles C. Sims, Enumerating $p$-groups, Proc. London Math. Soc. (3) 15 (1965), 151–166. MR 169921, DOI https://doi.org/10.1112/plms/s3-15.1.151
Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 20D15, 11M41, 03C10, 14E15, 11M45
Retrieve articles in all journals with MSC (1991): 20D15, 11M41, 03C10, 14E15, 11M45
Additional Information
Marcus du Sautoy
Affiliation:
DPMMS, 16 Mill Lane, Cambridge CB2 1SB, UK
Email:
dusautoy@dpmms.cam.ac.uk
Received by editor(s):
April 19, 1999
Published electronically:
August 30, 1999
Communicated by:
Efim Zelmanov
Article copyright:
© Copyright 1999
American Mathematical Society