Minimal representations of exceptional $p$-adic groups
HTML articles powered by AMS MathViewer
- by Karl E. Rumelhart PDF
- Represent. Theory 1 (1997), 133-181 Request permission
References
- Ranee Brylinski and Bertram Kostant, Lagrangian models of minimal representations of $E_6$, $E_7$ and $E_8$, Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993) Progr. Math., vol. 131, Birkhäuser Boston, Boston, MA, 1995, pp. 13–63. MR 1372999, DOI 10.1007/978-1-4612-2582-9_{2}
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Benedict H. Gross and Nolan R. Wallach, A distinguished family of unitary representations for the exceptional groups of real rank $=4$, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 289–304. MR 1327538, DOI 10.1007/978-1-4612-0261-5_{1}0
- Harish-Chandra, Admissible invariant distributions on reductive $p$-adic groups, Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977) Queen’s Papers in Pure Appl. Math., No. 48, Queen’s Univ., Kingston, Ont., 1978, pp. 281–347. MR 0579175
- Roger E. Howe, Kirillov theory for compact $p$-adic groups, Pacific J. Math. 73 (1977), no. 2, 365–381. MR 579176, DOI 10.2140/pjm.1977.73.365
- Roger E. Howe, Topics in harmonic analysis on solvable algebraic groups, Pacific J. Math. 73 (1977), no. 2, 383–435. MR 480858, DOI 10.2140/pjm.1977.73.383
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099, DOI 10.1090/coll/039
- David Kazhdan, The minimal representation of $D_4$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 125–158. MR 1103589
- D. Kazhdan and G. Savin, The smallest representation of simply laced groups, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 209–223. MR 1159103
- Max Koecher, Imbedding of Jordan algebras into Lie algebras. I, Amer. J. Math. 89 (1967), 787–816. MR 214631, DOI 10.2307/2373242
- Hideya Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1–62 (French). MR 240214, DOI 10.24033/asens.1174
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- C. Mœglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes $p$-adiques, Math. Z. 196 (1987), no. 3, 427–452 (French). MR 913667, DOI 10.1007/BF01200363
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Gopal Prasad and M. S. Raghunathan, Topological central extensions of semisimple groups over local fields, Ann. of Math. (2) 119 (1984), no. 1, 143–201. MR 736564, DOI 10.2307/2006967
- R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), no. 2, 335–371. MR 1197062, DOI 10.2140/pjm.1993.157.335
- K. Rumelhart, Minimal Representations of Exceptional $p$-adic Groups. Harvard University Thesis, 1995.
- K. Rumelhart, ‘An automorphic theta module for a rank two form of $E_6$.’ Preprint.
- Gordan Savin, An analogue of the Weil representation for $G_2$, J. Reine Angew. Math. 434 (1993), 115–126. MR 1195692, DOI 10.1515/crll.1993.434.115
- Gordan Savin, Dual pair $G_{\scr J}\times \textrm {PGL}_2$ [where] $G_{\scr J}$ is the automorphism group of the Jordan algebra ${\scr J}$, Invent. Math. 118 (1994), no. 1, 141–160. MR 1288471, DOI 10.1007/BF01231530
- Richard D. Schafer, An introduction to nonassociative algebras, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966. MR 0210757
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588, DOI 10.1090/pspum/033.1/546588
- P. Torasso, ‘Méthod des orbits de Kirillov-Duflo, orbites nilpotentes et représentations associées.’ Preprint.
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
Additional Information
- Karl E. Rumelhart
- Affiliation: Department of Mathematics, Building 380, Stanford University, Stanford, California 94305-2125
- Email: ker@math.stanford.edu
- Received by editor(s): October 22, 1996
- Received by editor(s) in revised form: April 3, 1997
- Published electronically: June 19, 1997
- © Copyright 1997 American Mathematical Society
- Journal: Represent. Theory 1 (1997), 133-181
- MSC (1991): Primary 22E35, 22E50, 17B25, 17B60; Secondary 11F70, 11F27, 17C50
- DOI: https://doi.org/10.1090/S1088-4165-97-00009-5
- MathSciNet review: 1455128