Differential operators on some nilpotent orbits
HTML articles powered by AMS MathViewer
- by T. Levasseur and J. T. Stafford
- Represent. Theory 3 (1999), 457-473
- DOI: https://doi.org/10.1090/S1088-4165-99-00084-9
- Published electronically: December 3, 1999
- PDF | Request permission
Abstract:
In recent work, Astashkevich and Brylinski construct some differential operators of Euler degree $-1$ (thus, they lower the degree of polynomials by one) on the coordinate ring $\mathcal {O}(\mathbb {O}_{\min }(\mathfrak {g}))$ of the minimal nilpotent orbit $\mathbb O_{\min }(\mathfrak {g})$ for any classical, complex simple Lie algebra $\mathfrak {g}$. They term these operators “exotic” since there is “(apparently) no geometric or algebraic theory that explains them”. In this paper, we provide just such an algebraic theory for ${\mathfrak {sl}}(n)$ by giving a complete description of the ring of differential operators on $\mathbb O_{\min }({\mathfrak {sl}}(n)).$ The method of proof also works for various related varieties, notably for the Lagrangian submanifolds of the minimal orbit of classical Lie algebras for which Kostant and Brylinski have constructed exotic differential operators.References
- A. Astashkevich and R. Brylinski, Exotic Differential Operators on Complex Minimal Nilpotent Orbits, in “Advances in Geometry”, (Progress in Math., Vol. 172), Birkhäuser, Boston, 1998.
- Jan-Erik Björk, The Auslander condition on Noetherian rings, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 137–173. MR 1035224, DOI 10.1007/BFb0084075
- Walter Borho and Hanspeter Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220 (1976), no. 1, 1–24. MR 412240, DOI 10.1007/BF01354525
- Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68 (French). MR 877006, DOI 10.1007/BF01405091
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Ranee Brylinski and Bertram Kostant, Minimal representations of $E_6$, $E_7$, and $E_8$ and the generalized Capelli identity, Proc. Nat. Acad. Sci. U.S.A. 91 (1994), no. 7, 2469–2472. MR 1267034, DOI 10.1073/pnas.91.7.2469
- Ranee Brylinski and Bertram Kostant, Minimal representations, geometric quantization, and unitarity, Proc. Nat. Acad. Sci. U.S.A. 91 (1994), no. 13, 6026–6029. MR 1278630, DOI 10.1073/pnas.91.13.6026
- Ranee Brylinski and Bertram Kostant, Nilpotent orbits, normality and Hamiltonian group actions, J. Amer. Math. Soc. 7 (1994), no. 2, 269–298. MR 1239505, DOI 10.1090/S0894-0347-1994-1239505-8
- Ranee Brylinski and Bertram Kostant, Differential operators on conical Lagrangian manifolds, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 65–96. MR 1327531, DOI 10.1007/978-1-4612-0261-5_{3}
- Ranee Brylinski and Bertram Kostant, Lagrangian models of minimal representations of $E_6$, $E_7$ and $E_8$, Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993) Progr. Math., vol. 131, Birkhäuser Boston, Boston, MA, 1995, pp. 13–63. MR 1372999
- D. Garfinkle, A new construction of the Joseph ideal, Ph. D. Thesis, M.I.T., 1982.
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Yasunori Ishibashi, Nakai’s conjecture for invariant subrings, Hiroshima Math. J. 15 (1985), no. 2, 429–436. MR 805061, DOI 10.32917/hmj/1206130778
- George R. Kempf, On the collapsing of homogeneous bundles, Invent. Math. 37 (1976), no. 3, 229–239. MR 424841, DOI 10.1007/BF01390321
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 (German). MR 768181, DOI 10.1007/978-3-322-83813-1
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
- Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, DOI 10.1007/BF02565876
- Thierry Levasseur, Anneaux d’opérateurs différentiels, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980) Lecture Notes in Math., vol. 867, Springer, Berlin, 1981, pp. 157–173 (French). MR 633520, DOI 10.1007/BFb0090386
- Thierry Levasseur, Grade des modules sur certains anneaux filtrés, Comm. Algebra 9 (1981), no. 15, 1519–1532 (French). MR 630321, DOI 10.1080/00927878108822662
- Thierry Levasseur, La dimension de Krull de $U(\textrm {sl}(3))$, J. Algebra 102 (1986), no. 1, 39–59 (French, with English summary). MR 853230, DOI 10.1016/0021-8693(86)90127-4
- Thierry Levasseur, Relèvements d’opérateurs différentiels sur les anneaux d’invariants, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 449–470 (French). MR 1103600
- T. Levasseur, S. P. Smith, and J. T. Stafford, The minimal nilpotent orbit, the Joseph ideal, and differential operators, J. Algebra 116 (1988), no. 2, 480–501. MR 953165, DOI 10.1016/0021-8693(88)90231-1
- T. Levasseur and J. T. Stafford, Rings of differential operators on classical rings of invariants, Mem. Amer. Math. Soc. 81 (1989), no. 412, vi+117. MR 988083, DOI 10.1090/memo/0412
- M. Lorenz, Gelfand-Kirillov Dimension, Cuadernos de Algebra, No. 7 (Grenada, Spain), 1988.
- Ian M. Musson, Rings of differential operators on invariant rings of tori, Trans. Amer. Math. Soc. 303 (1987), no. 2, 805–827. MR 902799, DOI 10.1090/S0002-9947-1987-0902799-2
- D. I. Panyushev, Rationality of singularities and the Gorenstein property of nilpotent orbits, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 76–78 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 3, 225–226 (1992). MR 1139878, DOI 10.1007/BF01085494
- V. L. Popov and E. B. Vinberg, Invariant Theory, in “Algebraic Geometry IV”, (Eds: A. N. Parshin and I. R. Shafarevich), Springer-Verlag, Berlin/Heidelberg/New York, 1991.
- Gerald W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 253–305. MR 1326669, DOI 10.24033/asens.1714
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI 10.1016/0001-8708(78)90045-2
- Michel Van den Bergh, Differential operators on semi-invariants for tori and weighted projective spaces, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 255–272. MR 1180993, DOI 10.1007/BFb0083507
Bibliographic Information
- T. Levasseur
- Affiliation: Département de Mathématiques, Université de Brest, 29285 Brest, France
- Email: Thierry.Levasseur@univ-brest.fr
- J. T. Stafford
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Email: jts@math.lsa.umich.edu
- Received by editor(s): September 7, 1999
- Received by editor(s) in revised form: October 13, 1999
- Published electronically: December 3, 1999
- Additional Notes: The research of both authors was supported in part by NSF grant NSF-G-DMS 9801148
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory 3 (1999), 457-473
- MSC (1991): Primary 14L30, 16S32, 17B20, 58F06
- DOI: https://doi.org/10.1090/S1088-4165-99-00084-9
- MathSciNet review: 1719509