Hecke-Clifford superalgebras, crystals of type $A_{2\ell }^{(2)}$ and modular branching rules for $\widehat {S}_n$
Authors:
Jonathan Brundan and Alexander Kleshchev
Journal:
Represent. Theory 5 (2001), 317-403
MSC (2000):
Primary 17B67, 20C08, 20C20, 17B10, 17B37
DOI:
https://doi.org/10.1090/S1088-4165-01-00123-6
Published electronically:
October 24, 2001
MathSciNet review:
1870595
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper is concerned with the modular representation theory of the affine Hecke-Clifford superalgebra, the cyclotomic Hecke-Clifford superalgebras, and projective representations of the symmetric group. Our approach exploits crystal graphs of affine Kac-Moody algebras.
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Springer-Verlag, New York-Heidelberg, 1974. Graduate Texts in Mathematics, Vol. 13. MR 0417223
- Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789β808. MR 1443748, DOI https://doi.org/10.1215/kjm/1250518452 [A$_2$]A2 S. Ariki, On the classification of simple modules for cyclotomic Hecke algebras of type $G(m,1,n)$ and Kleshchev multipartitions, to appear in Osaka J. Math..
- Susumu Ariki and Kazuhiko Koike, A Hecke algebra of $({\bf Z}/r{\bf Z})\wr {\mathfrak S}_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no. 2, 216β243. MR 1279219, DOI https://doi.org/10.1006/aima.1994.1057
- Susumu Ariki and Andrew Mathas, The number of simple modules of the Hecke algebras of type $G(r,1,n)$, Math. Z. 233 (2000), no. 3, 601β623. MR 1750939, DOI https://doi.org/10.1007/s002090050489
- George M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), no. 2, 178β218. MR 506890, DOI https://doi.org/10.1016/0001-8708%2878%2990010-5
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak p}$-adic groups. I, Ann. Sci. Γcole Norm. Sup. (4) 10 (1977), no. 4, 441β472. MR 579172
- Jonathan Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type $A$, Proc. London Math. Soc. (3) 77 (1998), no. 3, 551β581. MR 1643413, DOI https://doi.org/10.1112/S0024611598000562
- Jonathan Brundan and Alexander Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), no. 1, 75β106. MR 1719176, DOI https://doi.org/10.1112/S0024611500012132 [BK$_2$]BK J. Brundan and A. Kleshchev, Projective representations of the symmetric group via Sergeev duality, to appear in Math. Z..
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20β52. MR 812444, DOI https://doi.org/10.1112/plms/s3-52.1.20 [G$_1$]G I. Grojnowski, Affine $\widehat {\mathfrak {sl}}_p$ controls the modular representation theory of the symmetric group and related Hecke algebras, preprint, 1999. [G$_2$]G2 I. Grojnowski, Blocks of the cyclotomic Hecke algebra, preprint, 1999. [GV]GV I. Grojnowski and M. Vazirani, Strong multiplicity one theorem for affine Hecke algebras of type $A$, Transf. Groups., to appear.
- John F. Humphreys, Blocks of projective representations of the symmetric groups, J. London Math. Soc. (2) 33 (1986), no. 3, 441β452. MR 850960, DOI https://doi.org/10.1112/jlms/s2-33.3.441
- Jens C. Jantzen and Gary M. Seitz, On the representation theory of the symmetric groups, Proc. London Math. Soc. (3) 65 (1992), no. 3, 475β504. MR 1182100, DOI https://doi.org/10.1112/plms/s3-65.3.475
- A. R. Jones and M. L. Nazarov, Affine Sergeev algebra and $q$-analogues of the Young symmetrizers for projective representations of the symmetric group, Proc. London Math. Soc. (3) 78 (1999), no. 3, 481β512. MR 1674836, DOI https://doi.org/10.1112/S002461159900177X
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219 [Kg]Kang S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, preprint, Seoul National University, 2000.
- Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155β197. MR 1357199
- Masaki Kashiwara and Yoshihisa Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9β36. MR 1458969, DOI https://doi.org/10.1215/S0012-7094-97-08902-X
- Shin-ichi Kato, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 929β943 (1982). MR 656065
- A. S. Kleshchev, Branching rules for modular representations of symmetric groups. I, J. Algebra 178 (1995), no. 2, 493β511. MR 1359899, DOI https://doi.org/10.1006/jabr.1995.1362
- A. S. Kleshchev, Branching rules for modular representations of symmetric groups. I, J. Algebra 178 (1995), no. 2, 493β511. MR 1359899, DOI https://doi.org/10.1006/jabr.1995.1362
- Alexander Kleshchev, Branching rules for modular representations of symmetric groups. IV, J. Algebra 201 (1998), no. 2, 547β572. MR 1612335, DOI https://doi.org/10.1006/jabr.1997.7302
- Alexander Kleshchev, On decomposition numbers and branching coefficients for symmetric and special linear groups, Proc. London Math. Soc. (3) 75 (1997), no. 3, 497β558. MR 1466660, DOI https://doi.org/10.1112/S0024611597000427
- Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205β263. MR 1410572
- Bernard Leclerc and Jean-Yves Thibon, Canonical bases of $q$-deformed Fock spaces, Internat. Math. Res. Notices 9 (1996), 447β456. MR 1399410, DOI https://doi.org/10.1155/S1073792896000293
- Bernard Leclerc and Jean-Yves Thibon, $q$-deformed Fock spaces and modular representations of spin symmetric groups, J. Phys. A 30 (1997), no. 17, 6163β6176. MR 1482704, DOI https://doi.org/10.1088/0305-4470/30/17/023 [Le]Leites D.A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1β64.
- Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. MR 0354798
- Yuri I. Manin, Gauge field theory and complex geometry, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1997. Translated from the 1984 Russian original by N. Koblitz and J. R. King; With an appendix by Sergei Merkulov. MR 1632008
- Kailash Misra and Tetsuji Miwa, Crystal base for the basic representation of $U_q(\mathfrak s\mathfrak l(n))$, Comm. Math. Phys. 134 (1990), no. 1, 79β88. MR 1079801 [Mo]Morris A.O. Morris, The spin representations of the symmetric group, Canad. J. Math. 17 (1965), 543-549. involving shifted Young diagrams, Math. Proc. Camb. Phil. Soc. 99 (1986), 23-31.
- Maxim Nazarov, Youngβs symmetrizers for projective representations of the symmetric group, Adv. Math. 127 (1997), no. 2, 190β257. MR 1448714, DOI https://doi.org/10.1006/aima.1997.1621
- Andrei Okounkov and Anatoly Vershik, A new approach to representation theory of symmetric groups, Selecta Math. (N.S.) 2 (1996), no. 4, 581β605. MR 1443185, DOI https://doi.org/10.1007/PL00001384
- G. I. Olshanski, Quantized universal enveloping superalgebra of type $Q$ and a super-extension of the Hecke algebra, Lett. Math. Phys. 24 (1992), no. 2, 93β102. MR 1163061, DOI https://doi.org/10.1007/BF00402673
- Olivier Schiffmann, The Hall algebra of a cyclic quiver and canonical bases of Fock spaces, Internat. Math. Res. Notices 8 (2000), 413β440. MR 1753691, DOI https://doi.org/10.1155/S1073792800000234
- Alexander Sergeev, The Howe duality and the projective representations of symmetric groups, Represent. Theory 3 (1999), 416β434. MR 1722115, DOI https://doi.org/10.1090/S1088-4165-99-00085-0
- Michela Varagnolo and Eric Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267β297. MR 1722955, DOI https://doi.org/10.1215/S0012-7094-99-10010-X [VV]VV M. Varagnolo and E. Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), 267β297. [V$_1$]Vt M. Vazirani, Irreducible modules over the affine Hecke algebra: a strong multiplicity one result, Ph.D. thesis, UC Berkeley, 1999. [V$_2$]V M. Vazirani, Filtrations on the Mackey decomposition for cyclotomic Hecke algebras, preprint, 1999.
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak p}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$, Ann. Sci. Γcole Norm. Sup. (4) 13 (1980), no. 2, 165β210. MR 584084
- Andrey V. Zelevinsky, Representations of finite classical groups, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin-New York, 1981. A Hopf algebra approach. MR 643482
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B67, 20C08, 20C20, 17B10, 17B37
Retrieve articles in all journals with MSC (2000): 17B67, 20C08, 20C20, 17B10, 17B37
Additional Information
Jonathan Brundan
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email:
brundan@darkwing.uoregon.edu
Alexander Kleshchev
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403
MR Author ID:
268538
Email:
klesh@math.uoregon.edu
Received by editor(s):
March 9, 2001
Received by editor(s) in revised form:
August 15, 2001
Published electronically:
October 24, 2001
Additional Notes:
Both authors were partially supported by the NSF (grant nos DMS-9801442 and DMS-9900134)
Article copyright:
© Copyright 2001
American Mathematical Society