Comparisons of general linear groups and their metaplectic coverings II
HTML articles powered by AMS MathViewer
- by Paul Mezo
- Represent. Theory 5 (2001), 524-580
- DOI: https://doi.org/10.1090/S1088-4165-01-00110-8
- Published electronically: November 27, 2001
- PDF | Request permission
Abstract:
Let $\mathbf {A}$ be the adele ring of a number field containing the $n$th roots of unity, and let $\widetilde {\mathrm {GL}}(r,\mathbf {A})$ be an $n$-fold metaplectic covering of $\mathrm {GL}(r,\mathbf {A})$. Under an assumption on $n$, we prove identities between all of the terms in Arthur’s invariant trace formulas for $\widetilde {\mathrm {GL}}(r,\mathbf {A})$ and $\mathrm {GL}(r,\mathbf {A})$. We then establish a correspondence between the automorphic representations of these groups.References
- William A. Adkins and Steven H. Weintraub, Algebra, Graduate Texts in Mathematics, vol. 136, Springer-Verlag, New York, 1992. An approach via module theory. MR 1181420, DOI 10.1007/978-1-4612-0923-2
- James Arthur, The trace formula in invariant form, Ann. of Math. (2) 114 (1981), no. 1, 1–74. MR 625344, DOI 10.2307/1971376
- James Arthur, On a family of distributions obtained from Eisenstein series. II. Explicit formulas, Amer. J. Math. 104 (1982), no. 6, 1289–1336. MR 681738, DOI 10.2307/2374062
- James Arthur, A Paley-Wiener theorem for real reductive groups, Acta Math. 150 (1983), no. 1-2, 1–89. MR 697608, DOI 10.1007/BF02392967
- James Arthur, On a family of distributions obtained from orbits, Canad. J. Math. 38 (1986), no. 1, 179–214. MR 835041, DOI 10.4153/CJM-1986-009-4
- James Arthur, The characters of supercuspidal representations as weighted orbital integrals, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 3–19 (1988). MR 983600, DOI 10.1007/BF02837809
- James Arthur, The invariant trace formula. I. Local theory, J. Amer. Math. Soc. 1 (1988), no. 2, 323–383. MR 928262, DOI 10.1090/S0894-0347-1988-0928262-5
- James Arthur, The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (1988), no. 3, 501–554. MR 939691, DOI 10.1090/S0894-0347-1988-0939691-8
- James Arthur, The local behaviour of weighted orbital integrals, Duke Math. J. 56 (1988), no. 2, 223–293. MR 932848, DOI 10.1215/S0012-7094-88-05612-8
- James Arthur, Intertwining operators and residues. I. Weighted characters, J. Funct. Anal. 84 (1989), no. 1, 19–84. MR 999488, DOI 10.1016/0022-1236(89)90110-9
- James Arthur, Intertwining operators and residues. II. Invariant distributions, Compositio Math. 70 (1989), no. 1, 51–99. MR 993173
- James Arthur, Towards a local trace formula, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 1–23. MR 1463695
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299, DOI 10.1515/9781400882403
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive $p$-adic groups, J. Analyse Math. 47 (1986), 180–192. MR 874050, DOI 10.1007/BF02792538
- Hubert Rubenthaler, La surjectivité de l’application moyenne pour les espaces préhomogènes, J. Funct. Anal. 60 (1985), no. 1, 80–94 (French, with English summary). MR 780105, DOI 10.1016/0022-1236(85)90059-X
- Yuval Z. Flicker, Automorphic forms on covering groups of $\textrm {GL}(2)$, Invent. Math. 57 (1980), no. 2, 119–182. MR 567194, DOI 10.1007/BF01390092
- Yuval Z. Flicker and David A. Kazhdan, Metaplectic correspondence, Inst. Hautes Études Sci. Publ. Math. 64 (1986), 53–110. MR 876160, DOI 10.1007/BF02699192
- Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241–318. MR 219665, DOI 10.1007/BF02391779
- Jing-Song Huang, The unitary dual of the covering groups of $\textrm {GL}(n)$ over a local field, Harmonic analysis in China, Math. Appl., vol. 327, Kluwer Acad. Publ., Dordrecht, 1995, pp. 103–124. MR 1355798, DOI 10.1007/978-94-011-0141-7_{5}
- Hervé Jacquet, On the residual spectrum of $\textrm {GL}(n)$, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 185–208. MR 748508, DOI 10.1007/BFb0073148
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654, DOI 10.1007/BFb0058988
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. MR 618323, DOI 10.2307/2374103
- D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math. 59 (1984), 35–142. MR 743816, DOI 10.1007/BF02698770
- D. A. Kazhdan and S. J. Patterson, Towards a generalized Shimura correspondence, Adv. in Math. 60 (1986), no. 2, 161–234. MR 840303, DOI 10.1016/S0001-8708(86)80010-X
- Martin Kneser, Strong approximation, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 187–196. MR 0213361, DOI 10.1090/pspum/009/0213361
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Serge Lang, Algebra, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. MR 783636
- Robert P. Langlands, Base change for $\textrm {GL}(2)$, Annals of Mathematics Studies, No. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808 one P. Mezo, Comparisons of general linear groups and their metaplecitic coverings I, To appear in Canad. J. Math. fund —, Matching of weighted orbital integrals for metaplectic correspondences, To appear in Canad. Math. Bull. thesis —, A global comparison for general linear groups and their metaplectic coverings, Ph.D. thesis, University of Toronto, 1998. com2 —, New identities of differential operators from orbital integrals on $\mathrm {GL}(r,\mathbf {C})$, Proc. Amer. Math. Soc. (to appear).
- C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605–674 (French). MR 1026752, DOI 10.24033/asens.1595
- Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481. MR 332663, DOI 10.2307/1970831 sun H. Sun, Spectral decomposition of a covering of ${GL}(r)$: the Borel case, Preprint.
- M. Tadić, On characters of irreducible unitary representations of general linear groups, Abh. Math. Sem. Univ. Hamburg 65 (1995), 341–363. MR 1359141, DOI 10.1007/BF02953339
- Marie-France Vignéras, Caractérisation des intégrales orbitales sur un groupe réductif $p$-adique, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 945–961 (1982) (French). MR 656066
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Paul Mezo
- Affiliation: Max-Planck-Institut für Mathematik, PB: 7280, D-53072 Bonn, Germany
- Address at time of publication: Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 2G3 Canada
- Email: pmeto@math.toronto.edu
- Received by editor(s): August 20, 2000
- Received by editor(s) in revised form: August 13, 2001
- Published electronically: November 27, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory 5 (2001), 524-580
- MSC (2000): Primary 11F70; Secondary 11F72, 22E55
- DOI: https://doi.org/10.1090/S1088-4165-01-00110-8
- MathSciNet review: 1870602