Representations of graded Hecke algebras
Authors:
Cathy Kriloff and Arun Ram
Journal:
Represent. Theory 6 (2002), 31-69
MSC (2000):
Primary 20C08; Secondary 16G99
DOI:
https://doi.org/10.1090/S1088-4165-02-00160-7
Published electronically:
May 2, 2002
MathSciNet review:
1915086
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Representations of affine and graded Hecke algebras associated to Weyl groups play an important role in the Langlands correspondence for the admissible representations of a reductive $p$-adic group. We work in the general setting of a graded Hecke algebra associated to any real reflection group with arbitrary parameters. In this setting we provide a classification of all irreducible representations of graded Hecke algebras associated to dihedral groups. Dimensions of generalized weight spaces, Langlands parameters, and a Springer-type correspondence are included in the classification. We also give an explicit construction of all irreducible calibrated representations (those possessing a simultaneous eigenbasis for the commutative subalgebra) of a general graded Hecke algebra. While most of the techniques used have appeared previously in various contexts, we include a complete and streamlined exposition of all necessary results, including the Langlands classification of irreducible representations and the irreducibility criterion for principal series representations.
- Anders Björner, Orderings of Coxeter groups, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 175–195. MR 777701, DOI https://doi.org/10.1090/conm/034/777701
- Dan Barbasch and Allen Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), no. 1, 19–37. MR 1010153, DOI https://doi.org/10.1007/BF01388842
- Dan Barbasch and Allen Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611–635. MR 1186959, DOI https://doi.org/10.1090/S0894-0347-1993-1186959-0
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI https://doi.org/10.1007/BF01390139
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Ivan Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), no. 2, 411–431. MR 1128220, DOI https://doi.org/10.1007/BF01243918
- Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI https://doi.org/10.2307/2118632
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Sam Evens, The Langlands classification for graded Hecke algebras, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1285–1290. MR 1322921, DOI https://doi.org/10.1090/S0002-9939-96-03295-9
- G. J. Heckman and E. M. Opdam, Yang’s system of particles and Hecke algebras, Ann. of Math. (2) 145 (1997), no. 1, 139–173. MR 1432038, DOI https://doi.org/10.2307/2951825
- S. G. Hulsurkar, Proof of Verma’s conjecture on Weyl’s dimension polynomial, Invent. Math. 27 (1974), 45–52. MR 369555, DOI https://doi.org/10.1007/BF01389964
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943
- Shin-ichi Kato, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 929–943 (1982). MR 656065
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI https://doi.org/10.1007/BF01389157
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239
- Friedrich Knop and Siddhartha Sahi, A recursion and a combinatorial formula for Jack polynomials, Invent. Math. 128 (1997), no. 1, 9–22. MR 1437493, DOI https://doi.org/10.1007/s002220050134 [Kr1]Kr1:diss C. Kriloff, Representations of graded Hecke algebras associated to noncrystallographic root systems, Ph.D. Thesis, University of Michigan (1995).
- C. Kriloff, Some interesting nonspherical tempered representations of graded Hecke algebras, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4411–4428. MR 1603914, DOI https://doi.org/10.1090/S0002-9947-99-02308-9
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI https://doi.org/10.1090/surv/031/03
- George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 972345
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI https://doi.org/10.1090/S0894-0347-1989-0991016-9
- George Lusztig, Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR 1357201, DOI https://doi.org/10.1090/S1088-4165-02-00172-3
- Jozsef Losonczy, Standard Young tableaux in the Weyl group setting, J. Algebra 220 (1999), no. 1, 255–260. MR 1713425, DOI https://doi.org/10.1006/jabr.1999.7931
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
- Hideya Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lecture Notes in Mathematics, Vol. 590, Springer-Verlag, Berlin-New York, 1977 (French). MR 0579177
- Eric M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75–121. MR 1353018, DOI https://doi.org/10.1007/BF02392487 [Ra1]Ra1:calib A. Ram, Calibrated representations of affine Hecke algebras, preprint, 1998. [Ra2]Ra2:rank A. Ram, Representations of rank two affine Hecke algebras, preprint, 1998. [Ra3]Ra3:SYT A. Ram, Standard Young tableaux for finite root systems, preprint, 1998.
- J. D. Rogawski, On modules over the Hecke algebra of a $p$-adic group, Invent. Math. 79 (1985), no. 3, 443–465. MR 782228, DOI https://doi.org/10.1007/BF01388516
- Robert Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392–400. MR 167535, DOI https://doi.org/10.1090/S0002-9947-1964-0167535-3
- Robert Steinberg, On a theorem of Pittie, Topology 14 (1975), 173–177. MR 372897, DOI https://doi.org/10.1016/0040-9383%2875%2990025-7
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683 [Wg]Wg D. Waugh, Quotients of Coxeter groups under the weak order, Ph.D. Thesis, University of Michigan (1995). [Yg]Yg A. Young, On quantitative substitutional analysis (sixth and eighth papers), Proc. London Math. Soc. (2) 34 (1931), 196–230 and 37 (1934), 441–495.
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20C08, 16G99
Retrieve articles in all journals with MSC (2000): 20C08, 16G99
Additional Information
Cathy Kriloff
Affiliation:
Department of Mathematics, Idaho State University, Pocatello, Idaho 83209-8085
MR Author ID:
630044
ORCID:
0000-0003-2863-6724
Email:
krilcath@isu.edu
Arun Ram
Affiliation:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
MR Author ID:
316170
Email:
ram@math.wisc.edu
Received by editor(s):
May 15, 2001
Received by editor(s) in revised form:
December 21, 2001, and January 23, 2002
Published electronically:
May 2, 2002
Additional Notes:
Research of the first author supported in part by an NSF-AWM Mentoring Travel Grant
Research of the second author supported in part by National Security Agency grant MDA904-01-1-0032 and EPSRC Grant GR K99015
Article copyright:
© Copyright 2002
American Mathematical Society