Representations of graded Hecke algebras
HTML articles powered by AMS MathViewer
- by Cathy Kriloff and Arun Ram
- Represent. Theory 6 (2002), 31-69
- DOI: https://doi.org/10.1090/S1088-4165-02-00160-7
- Published electronically: May 2, 2002
- PDF | Request permission
Abstract:
Representations of affine and graded Hecke algebras associated to Weyl groups play an important role in the Langlands correspondence for the admissible representations of a reductive $p$-adic group. We work in the general setting of a graded Hecke algebra associated to any real reflection group with arbitrary parameters. In this setting we provide a classification of all irreducible representations of graded Hecke algebras associated to dihedral groups. Dimensions of generalized weight spaces, Langlands parameters, and a Springer-type correspondence are included in the classification. We also give an explicit construction of all irreducible calibrated representations (those possessing a simultaneous eigenbasis for the commutative subalgebra) of a general graded Hecke algebra. While most of the techniques used have appeared previously in various contexts, we include a complete and streamlined exposition of all necessary results, including the Langlands classification of irreducible representations and the irreducibility criterion for principal series representations.References
- Anders Björner, Orderings of Coxeter groups, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 175–195. MR 777701, DOI 10.1090/conm/034/777701
- Dan Barbasch and Allen Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), no. 1, 19–37. MR 1010153, DOI 10.1007/BF01388842
- Dan Barbasch and Allen Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611–635. MR 1186959, DOI 10.1090/S0894-0347-1993-1186959-0
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI 10.1007/BF01390139
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Ivan Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), no. 2, 411–431. MR 1128220, DOI 10.1007/BF01243918
- Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI 10.2307/2118632
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Sam Evens, The Langlands classification for graded Hecke algebras, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1285–1290. MR 1322921, DOI 10.1090/S0002-9939-96-03295-9
- G. J. Heckman and E. M. Opdam, Yang’s system of particles and Hecke algebras, Ann. of Math. (2) 145 (1997), no. 1, 139–173. MR 1432038, DOI 10.2307/2951825
- S. G. Hulsurkar, Proof of Verma’s conjecture on Weyl’s dimension polynomial, Invent. Math. 27 (1974), 45–52. MR 369555, DOI 10.1007/BF01389964
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943, DOI 10.1007/BFb0069521
- Shin-ichi Kato, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 929–943 (1982). MR 656065
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Friedrich Knop and Siddhartha Sahi, A recursion and a combinatorial formula for Jack polynomials, Invent. Math. 128 (1997), no. 1, 9–22. MR 1437493, DOI 10.1007/s002220050134 [Kr1]Kr1:diss C. Kriloff, Representations of graded Hecke algebras associated to noncrystallographic root systems, Ph.D. Thesis, University of Michigan (1995).
- C. Kriloff, Some interesting nonspherical tempered representations of graded Hecke algebras, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4411–4428. MR 1603914, DOI 10.1090/S0002-9947-99-02308-9
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 972345, DOI 10.1007/BF02699129
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- George Lusztig, Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR 1357201, DOI 10.1090/S1088-4165-02-00172-3
- Jozsef Losonczy, Standard Young tableaux in the Weyl group setting, J. Algebra 220 (1999), no. 1, 255–260. MR 1713425, DOI 10.1006/jabr.1999.7931
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
- Hideya Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lecture Notes in Mathematics, Vol. 590, Springer-Verlag, Berlin-New York, 1977 (French). MR 0579177, DOI 10.1007/BFb0086707
- Eric M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75–121. MR 1353018, DOI 10.1007/BF02392487 [Ra1]Ra1:calib A. Ram, Calibrated representations of affine Hecke algebras, preprint, 1998. [Ra2]Ra2:rank A. Ram, Representations of rank two affine Hecke algebras, preprint, 1998. [Ra3]Ra3:SYT A. Ram, Standard Young tableaux for finite root systems, preprint, 1998.
- J. D. Rogawski, On modules over the Hecke algebra of a $p$-adic group, Invent. Math. 79 (1985), no. 3, 443–465. MR 782228, DOI 10.1007/BF01388516
- Robert Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392–400. MR 167535, DOI 10.1090/S0002-9947-1964-0167535-3
- Robert Steinberg, On a theorem of Pittie, Topology 14 (1975), 173–177. MR 372897, DOI 10.1016/0040-9383(75)90025-7
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683 [Wg]Wg D. Waugh, Quotients of Coxeter groups under the weak order, Ph.D. Thesis, University of Michigan (1995). [Yg]Yg A. Young, On quantitative substitutional analysis (sixth and eighth papers), Proc. London Math. Soc. (2) 34 (1931), 196–230 and 37 (1934), 441–495.
Bibliographic Information
- Cathy Kriloff
- Affiliation: Department of Mathematics, Idaho State University, Pocatello, Idaho 83209-8085
- MR Author ID: 630044
- ORCID: 0000-0003-2863-6724
- Email: krilcath@isu.edu
- Arun Ram
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 316170
- Email: ram@math.wisc.edu
- Received by editor(s): May 15, 2001
- Received by editor(s) in revised form: December 21, 2001, and January 23, 2002
- Published electronically: May 2, 2002
- Additional Notes: Research of the first author supported in part by an NSF-AWM Mentoring Travel Grant
Research of the second author supported in part by National Security Agency grant MDA904-01-1-0032 and EPSRC Grant GR K99015 - © Copyright 2002 American Mathematical Society
- Journal: Represent. Theory 6 (2002), 31-69
- MSC (2000): Primary 20C08; Secondary 16G99
- DOI: https://doi.org/10.1090/S1088-4165-02-00160-7
- MathSciNet review: 1915086