Character sheaves on disconnected groups, II
HTML articles powered by AMS MathViewer
- by G. Lusztig PDF
- Represent. Theory 8 (2004), 72-124 Request permission
Abstract:
In this paper we establish the generalized Springer correspondence for possibly disconnected groups.References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Walter Borho and Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 707–710 (French, with English summary). MR 618892
- D. F. Holt and N. Spaltenstein, Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, J. Austral. Math. Soc. Ser. A 38 (1985), no. 3, 330–350. MR 779199, DOI 10.1017/S1446788700023636
- Robert B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980), no. 1, 62–80. MR 576184, DOI 10.1112/jlms/s2-21.1.62
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 453885, DOI 10.1007/BF01408569
- G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, DOI 10.1007/BF01390002
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193–237. MR 792706, DOI 10.1016/0001-8708(85)90034-9 [L9]L9 G. Lusztig, Character sheaves on disconnected groups,I, Represent. Theory 7 (2003), 374-403.
- G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), no. 1, 41–52. MR 527733, DOI 10.1112/jlms/s2-19.1.41
- G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316. MR 803339, DOI 10.2969/aspm/00610289
- Gunter Malle, Generalized Deligne-Lusztig characters, J. Algebra 159 (1993), no. 1, 64–97. MR 1231204, DOI 10.1006/jabr.1993.1147
- Gunter Malle, Green functions for groups of types $E_6$ and $F_4$ in characteristic $2$, Comm. Algebra 21 (1993), no. 3, 747–798. MR 1204754, DOI 10.1080/00927879308824595 [MS]MS G. Malle and K. Sorlin, Springer correspondence for disconnected groups, Math. Z. 246 (2004), 291-319. [So]So K. Sorlin, Springer correspondence in non-connected reductive groups, preprint.
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
Additional Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@math.mit.edu
- Received by editor(s): July 19, 2003
- Published electronically: April 23, 2004
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2004 American Mathematical Society
- Journal: Represent. Theory 8 (2004), 72-124
- MSC (2000): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-04-00238-9
- MathSciNet review: 2048588