Good orbital integrals
HTML articles powered by AMS MathViewer
- by Clifton Cunningham and Thomas C. Hales
- Represent. Theory 8 (2004), 414-457
- DOI: https://doi.org/10.1090/S1088-4165-04-00220-1
- Published electronically: September 9, 2004
Abstract:
This paper concerns a class of orbital integrals in Lie algebras over $p$-adic fields. The values of these orbital integrals at the unit element in the Hecke algebra count points on varieties over finite fields. The construction, which is based on motivic integration, works both in characteristic zero and in positive characteristic. As an application, the Fundamental Lemma for this class of integrals is lifted from positive characteristic to characteristic zero. The results are based on a formula for orbital integrals as distributions inflated from orbits in the quotient spaces of the Moy-Prasad filtrations of the Lie algebra. This formula is established by Fourier analysis on these quotient spaces.References
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1
- E. Gardner, Multiconnected neural network models, J. Phys. A 20 (1987), no. 11, 3453–3464. MR 914065, DOI 10.1088/0305-4470/20/11/046
- Jeffrey D. Adler and Alan Roche, An intertwining result for $p$-adic groups, Canad. J. Math. 52 (2000), no. 3, 449–467. MR 1758228, DOI 10.4153/CJM-2000-021-8
- Stephen Debacker, Homogeneity results for invariant distributions of a reductive $p$-adic group, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 391–422 (English, with English and French summaries). MR 1914003, DOI 10.1016/S0012-9593(02)01094-7
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316, DOI 10.1007/BF02700560 CL R. Cluckers and F. Loeser, Fonctions constructibles et intégration motivique I, in preparation.
- J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math. 109 (1987), no. 6, 991–1008. MR 919001, DOI 10.2307/2374583
- Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232. MR 1664700, DOI 10.1007/s002220050284
- Jan Denef and François Loeser, Definable sets, motives and $p$-adic integrals, J. Amer. Math. Soc. 14 (2001), no. 2, 429–469. MR 1815218, DOI 10.1090/S0894-0347-00-00360-X
- J. Denef and F. Loeser, Motivic integration and the Grothendieck group of pseudo-finite fields, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 13–23. MR 1957016 Rat J. Denef, F. Loeser, One some rational generating series occuring in arithmetic geometry, preprint math.NT/0212202.
- Herbert B. Enderton, A mathematical introduction to logic, 2nd ed., Harcourt/Academic Press, Burlington, MA, 2001. MR 1801397, DOI 10.1016/B978-0-08-049646-7.50005-9
- Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR 868860, DOI 10.1007/978-3-662-07216-5
- Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. MR 1606831
- Julia Gordon and Thomas C. Hales, Virtual transfer factors, Represent. Theory 7 (2003), 81–100. MR 1973368, DOI 10.1090/S1088-4165-03-00183-3 GKM-equiv M. Goresky, R. Kottwitz, and R. MacPherson, Purity of equivalued affine Springer fibers, math.RT/0305141.
- Mark Goresky, Robert Kottwitz, and Robert Macpherson, Homology of affine Springer fibers in the unramified case, Duke Math. J. 121 (2004), no. 3, 509–561. MR 2040285, DOI 10.1215/S0012-7094-04-12135-9
- Thomas C. Hales, A simple definition of transfer factors for unramified groups, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 109–134. MR 1216184, DOI 10.1090/conm/145/1216184
- Thomas C. Hales, Can $p$-adic integrals be computed?, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 313–329. MR 2058612 HOI T. C. Hales, Orbital Integrals are Motivic, math.RT/0212236.
- Harish-Chandra, Harmonic analysis on reductive $p$-adic groups, Lecture Notes in Mathematics, Vol. 162, Springer-Verlag, Berlin-New York, 1970. Notes by G. van Dijk. MR 0414797, DOI 10.1007/BFb0061269
- Ju-Lee Kim and Fiona Murnaghan, Character expansions and unrefined minimal $K$-types, Amer. J. Math. 125 (2003), no. 6, 1199–1234. MR 2018660, DOI 10.1353/ajm.2003.0043 KM2 J. Kim and F. Murnaghan, K-types and $\Gamma$-asymptotic expansions, preprint.
- Erasmus Landvogt, Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math. 518 (2000), 213–241. MR 1739403, DOI 10.1515/crll.2000.006
- R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR 909227, DOI 10.1007/BF01458070 Lfl G. Laumon, Sur le lemme fondamental pour les groupes unitaires, math.AG/0212245
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- Joseph Oesterlé, Réduction modulo $p^{n}$ des sous-ensembles analytiques fermés de $\textbf {Z}^{N}_{p}$, Invent. Math. 66 (1982), no. 2, 325–341 (French). MR 656627, DOI 10.1007/BF01389398
- Johan Pas, Uniform $p$-adic cell decomposition and local zeta functions, J. Reine Angew. Math. 399 (1989), 137–172. MR 1004136, DOI 10.1515/crll.1989.399.137 Pres M. Presburger, Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes-rendus du I Congrès des Mathématiciens des Pays Slaves, Warsaw, 1929, pp 92-101, 395.
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559, DOI 10.1007/BF02698692
- Willem Veys, Reduction modulo $p^n$ of $p$-adic subanalytic sets, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 3, 483–486. MR 1177996, DOI 10.1017/S0305004100071152
- Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269 (2001), vi+449 (French, with English and French summaries). MR 1817880 WC J.-L. Waldspurger, Endoscopie et changement de caractéristique, preprint 2/2004.
- J.-L. Waldspurger, Homogénéité de certaines distributions sur les groupes $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 25–72 (French). MR 1361755, DOI 10.1007/BF02699375
- J.-L. Waldspurger, Une formule des traces locale pour les algèbres de Lie $p$-adiques, J. Reine Angew. Math. 465 (1995), 41–99 (French). MR 1344131, DOI 10.1515/crll.1995.465.41
Bibliographic Information
- Clifton Cunningham
- Affiliation: Department of Mathematics, University of Calgary, Alberta, Canada, T2N 1N4
- Email: cunning@math.ucalgary.ca
- Thomas C. Hales
- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260
- Email: hales@pitt.edu
- Received by editor(s): November 21, 2003
- Received by editor(s) in revised form: April 27, 2004
- Published electronically: September 9, 2004
- Additional Notes: The research of the second author was supported in part by the NSF
This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA - © Copyright 2004 C. Cunningham and T. C. Hales
- Journal: Represent. Theory 8 (2004), 414-457
- MSC (2000): Primary 22E50, 14F42
- DOI: https://doi.org/10.1090/S1088-4165-04-00220-1
- MathSciNet review: 2084489