## Integral structures in the $p$-adic holomorphic discrete series

HTML articles powered by AMS MathViewer

- by Elmar Grosse-Klönne PDF
- Represent. Theory
**9**(2005), 354-384 Request permission

## Abstract:

For a local non-Archimedean field $K$ we construct ${\mathrm {GL}}_{d+1}(K)$-equivariant coherent sheaves ${\mathcal V}_{{\mathcal O}_K}$ on the formal ${\mathcal O}_K$-scheme ${\mathfrak X}$ underlying the symmetric space $X$ over $K$ of dimension $d$. These ${\mathcal V}_{{\mathcal O}_K}$ are ${\mathcal O}_K$-lattices in (the sheaf version of) the holomorphic discrete series representations (in $K$-vector spaces) of ${\mathrm {GL}}_{d+1}(K)$ as defined by P. Schneider. We prove that the cohomology $H^t({\mathfrak X},{\mathcal V}_{{\mathcal O}_K})$ vanishes for $t>0$, for ${\mathcal V}_{{\mathcal O}_K}$ in a certain subclass. The proof is related to the other main topic of this paper: over a finite field $k$, the study of the cohomology of vector bundles on the natural normal crossings compactification $Y$ of the Deligne-Lusztig variety $Y^0$ for ${\mathrm {GL}}_{d+1}/k$ (so $Y^0$ is the open subscheme of ${\mathbb P}_k^d$ obtained by deleting all its $k$-rational hyperplanes).## References

- Spencer Bloch and Kazuya Kato,
*$p$-adic étale cohomology*, Inst. Hautes Études Sci. Publ. Math.**63**(1986), 107–152. MR**849653**, DOI 10.1007/BF02831624 - Marc Cabanes and Michel Enguehard,
*Representation theory of finite reductive groups*, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR**2057756**, DOI 10.1017/CBO9780511542763 - R. W. Carter and G. Lusztig,
*Modular representations of finite groups of Lie type*, Proc. London Math. Soc. (3)**32**(1976), no. 2, 347–384. MR**396731**, DOI 10.1112/plms/s3-32.2.347 - P. Deligne and G. Lusztig,
*Representations of reductive groups over finite fields*, Ann. of Math. (2)**103**(1976), no. 1, 103–161. MR**393266**, DOI 10.2307/1971021
mathan - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**, DOI 10.1007/978-1-4757-3849-0 - James E. Humphreys,
*Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR**0323842**, DOI 10.1007/978-1-4612-6398-2
ito - Jens Carsten Jantzen,
*Representations of algebraic groups*, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR**899071**
mus - Peter Schneider,
*The cohomology of local systems on $p$-adically uniformized varieties*, Math. Ann.**293**(1992), no. 4, 623–650. MR**1176024**, DOI 10.1007/BF01444738 - Peter Schneider and Jeremy Teitelbaum,
*An integral transform for $p$-adic symmetric spaces*, Duke Math. J.**86**(1997), no. 3, 391–433. MR**1432303**, DOI 10.1215/S0012-7094-97-08612-9 - Peter Schneider and Jeremy Teitelbaum,
*$p$-adic boundary values*, Astérisque**278**(2002), 51–125. Cohomologies $p$-adiques et applications arithmétiques, I. MR**1922824** - Jeremy T. Teitelbaum,
*Modular representations of $\textrm {PGL}_2$ and automorphic forms for Shimura curves*, Invent. Math.**113**(1993), no. 3, 561–580. MR**1231837**, DOI 10.1007/BF01244318

*E. Grosse-Klönne*, Integral structures in automorphic line bundles on the $p$-adic upper half plane, Math. Ann.

**329**, 463–493 (2004). phien

*E. Grosse-Klönne*, Frobenius and Monodromy operators in rigid analysis, and Drinfel’d’s symmetric space, to appear in Journal of Algebraic Geometry. acy

*E. Grosse-Klönne*, Acyclic coefficient systems on buildings, to appear in Compositio Math. latt

*E. Grosse-Klönne*, Sheaves of $p$-adic lattices in Weyl modules for ${\mathrm {GL}}$, preprint.

*T. Ito*, Weight-Monodromy conjecture for $p$-adically uniformized varieties, preprint 2003.

*G. A. Mustafin*, Non-Archimedean uniformization, Math. USSR Sbornik

**34**, 187-214 (1987).

## Additional Information

**Elmar Grosse-Klönne**- Affiliation: Mathematisches Institut der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
- Email: klonne@math.uni-muenster.de
- Received by editor(s): October 2, 2004
- Received by editor(s) in revised form: March 5, 2005
- Published electronically: April 19, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Represent. Theory
**9**(2005), 354-384 - MSC (2000): Primary 14G22
- DOI: https://doi.org/10.1090/S1088-4165-05-00259-1
- MathSciNet review: 2133764