Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

A triangulation of $\mathrm {GL}(n,F)$


Author: Alexandru Tupan
Journal: Represent. Theory 10 (2006), 158-163
MSC (2000): Primary 20G05
DOI: https://doi.org/10.1090/S1088-4165-06-00224-X
Published electronically: March 14, 2006
MathSciNet review: 2219111
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $F$ be a non-Archimedian field. We prove that each open and compact subset of $\mathrm {GL}_n(F)$ can be decomposed into finitely many open, compact, and self-conjugate subsets. As a corollary, we obtain a short, elementary proof of a well-known theorem of I.M. Gelfand and D.A. Kazhdan.


References [Enhancements On Off] (What's this?)

  • I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 0425030
  • Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508
  • Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
  • I. M. Gel′fand and D. A. Každan, Representations of the group ${\rm GL}(n,K)$ where $K$ is a local field, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 73–74 (Russian). MR 0333080
  • Maxwell Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci. 35 (1963), 487–489. MR 171782

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20G05

Retrieve articles in all journals with MSC (2000): 20G05


Additional Information

Alexandru Tupan
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: tupan@math.msu.edu

Received by editor(s): December 17, 2003
Received by editor(s) in revised form: February 18, 2006
Published electronically: March 14, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.