A triangulation of $\mathrm {GL}(n,F)$
HTML articles powered by AMS MathViewer
- by Alexandru Tupan PDF
- Represent. Theory 10 (2006), 158-163 Request permission
Abstract:
Let $F$ be a non-Archimedian field. We prove that each open and compact subset of $\mathrm {GL}_n(F)$ can be decomposed into finitely many open, compact, and self-conjugate subsets. As a corollary, we obtain a short, elementary proof of a well-known theorem of I.M. Gelfand and D.A. Kazhdan.References
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 0425030
- Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508, DOI 10.1017/CBO9780511609572
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
- I. M. Gel′fand and D. A. Každan, Representations of the group $\textrm {GL}(n,K)$ where $K$ is a local field, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 73–74 (Russian). MR 0333080
- Maxwell Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci. 35 (1963), 487–489. MR 171782
Additional Information
- Alexandru Tupan
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- Email: tupan@math.msu.edu
- Received by editor(s): December 17, 2003
- Received by editor(s) in revised form: February 18, 2006
- Published electronically: March 14, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 10 (2006), 158-163
- MSC (2000): Primary 20G05
- DOI: https://doi.org/10.1090/S1088-4165-06-00224-X
- MathSciNet review: 2219111