Propagation de paires couvrantes dans les groupes symplectiques
Author:
Corinne Blondel
Journal:
Represent. Theory 10 (2006), 399-434
MSC (2000):
Primary 22E50; Secondary 20C08
DOI:
https://doi.org/10.1090/S1088-4165-06-00295-0
Published electronically:
October 3, 2006
MathSciNet review:
2266698
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a self-dual supercuspidal representation of
and
a supercuspidal representation of
, with
a local nonarchimedean field of odd residual characteristic. Given a type, indeed a
-cover, for the inertial class
satisfying suitable hypotheses, we produce a type, indeed a
-cover, for the inertial class
, for any positive integer
. We describe the corresponding Hecke algebra as a convolution algebra over an affine Weyl group of type
with quadratic relations inherited from the case
and the structural data for
.
- [BB] Laure Blasco and Corinne Blondel, Algèbres de Hecke et séries principales généralisées de 𝑆𝑝₄(𝐹), Proc. London Math. Soc. (3) 85 (2002), no. 3, 659–685 (French). MR 1936816, https://doi.org/10.1112/S0024611502013667
- [Bl1] Corinne Blondel, Critère d’injectivité pour l’application de Jacquet, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 11, 1149–1152 (French, with English and French summaries). MR 1490115, https://doi.org/10.1016/S0764-4442(97)83544-6
- [Bl2] Corinne Blondel, Quelques propriétés des paires couvrantes, Math. Ann. 331 (2005), no. 2, 243–257 (French). MR 2115455, https://doi.org/10.1007/s00208-004-0579-1
- [Bl3] Corinne Blondel, 𝑆𝑃(2𝑁)-covers for self-contragredient supercuspidal representations of 𝐺𝐿(𝑁), Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 4, 533–558 (English, with English and French summaries). MR 2097892, https://doi.org/10.1016/j.ansens.2003.10.003
- [Bo] Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- [Bu] Colin J. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of 𝐺𝐿_{𝑁}, J. Reine Angew. Math. 375/376 (1987), 184–210. MR 882297, https://doi.org/10.1515/crll.1987.375-376.184
- [BK1] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of 𝐺𝐿(𝑁) via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652
- [BK2] Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive 𝑝-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. MR 1643417, https://doi.org/10.1112/S0024611598000574
- [BK3] Colin J. Bushnell and Philip C. Kutzko, Types in reductive 𝑝-adic groups: the Hecke algebra of a cover, Proc. Amer. Math. Soc. 129 (2001), no. 2, 601–607. MR 1712937, https://doi.org/10.1090/S0002-9939-00-05665-3
- [Go] David Goldberg, Reducibility of induced representations for 𝑆𝑝(2𝑛) and 𝑆𝑂(𝑛), Amer. J. Math. 116 (1994), no. 5, 1101–1151. MR 1296726, https://doi.org/10.2307/2374942
- [Mo] Lawrence Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), no. 1, 1–54. MR 1235019, https://doi.org/10.1007/BF01232662
- [ST] Paul J. Sally Jr. and Marko Tadić, Induced representations and classifications for 𝐺𝑆𝑝(2,𝐹) and 𝑆𝑝(2,𝐹), Mém. Soc. Math. France (N.S.) 52 (1993), 75–133 (English, with English and French summaries). MR 1212952
- [St] Shaun Stevens, Intertwining and supercuspidal types for 𝑝-adic classical groups, Proc. London Math. Soc. (3) 83 (2001), no. 1, 120–140. MR 1829562, https://doi.org/10.1112/plms/83.1.120
- [Ta] Marko Tadić, Square integrable representations of classical 𝑝-adic groups corresponding to segments, Represent. Theory 3 (1999), 58–89. MR 1698200, https://doi.org/10.1090/S1088-4165-99-00071-0
- [Wa] J.-L. Waldspurger, Algèbres de Hecke et induites de représentations cuspidales, pour 𝐺𝐿(𝑁), J. Reine Angew. Math. 370 (1986), 127–191 (French). MR 852514, https://doi.org/10.1515/crll.1986.370.127
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E50, 20C08
Retrieve articles in all journals with MSC (2000): 22E50, 20C08
Additional Information
Corinne Blondel
Affiliation:
C.N.R.S. - Théorie des Groupes–Case 7012, Institut de Mathématiques de Jussieu, Université Paris 7, F-75251 PARIS Cedex 05.
Email:
blondel@math.jussieu.fr
DOI:
https://doi.org/10.1090/S1088-4165-06-00295-0
Received by editor(s):
September 28, 2005
Published electronically:
October 3, 2006
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.