Unitary $\mathcal I$-spherical representations for split $p$-adic $\mathbf E_6$
HTML articles powered by AMS MathViewer
- by Dan Ciubotaru PDF
- Represent. Theory 10 (2006), 435-480 Request permission
Abstract:
The determination of the Iwahori-spherical unitary representations for split $p$-adic groups can be reduced to the classification of unitary representations with real infinitesimal character for associated graded Hecke algebras. We determine the unitary modules with real infinitesimal character for the graded Hecke algebra of type $E_6$.References
-
[Al]Al D. Alvis, Induce/Restrict matrices for exceptional Weyl groups, preprint.
[Ba]B2 D. Barbasch, Unitary spherical spectrum for split classical groups, preprint, http://www.math.cornell.edu/~barbasch.
- Dan Barbasch and Dan Ciubotaru, Spherical unitary principal series, Pure Appl. Math. Q. 1 (2005), no.ย 4, Special Issue: In memory of Armand Borel., 755โ789. MR 2200999, DOI 10.4310/PAMQ.2005.v1.n4.a3 [BC2]BC1 D. Barbasch, D. Ciubotaru, Spherical unitary dual for split groups of exceptional type, preprint.
- Dan Barbasch and Allen Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), no.ย 1, 19โ37. MR 1010153, DOI 10.1007/BF01388842
- Dan Barbasch and Allen Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no.ย 3, 611โ635. MR 1186959, DOI 10.1090/S0894-0347-1993-1186959-0
- Dan Barbasch and Allen Moy, Unitary spherical spectrum for $p$-adic classical groups, Acta Appl. Math. 44 (1996), no.ย 1-2, 3โ37. Representations of Lie groups, Lie algebras and their quantum analogues. MR 1407038, DOI 10.1007/BF00116514
- Dan Barbasch and David A. Vogan Jr., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no.ย 1, 41โ110. MR 782556, DOI 10.2307/1971193
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233โ259. MR 444849, DOI 10.1007/BF01390139
- W. M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$, J. Algebra 88 (1984), no.ย 2, 584โ614. MR 747534, DOI 10.1016/0021-8693(84)90084-X
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- W. Casselman, A new nonunitarity argument for $p$-adic representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no.ย 3, 907โ928 (1982). MR 656064
- Dan Ciubotaru, The unitary $\Bbb I$-spherical dual for split $p$-adic groups of type $F_4$, Represent. Theory 9 (2005), 94โ137. MR 2123126, DOI 10.1090/S1088-4165-05-00206-2
- Sam Evens, The Langlands classification for graded Hecke algebras, Proc. Amer. Math. Soc. 124 (1996), no.ย 4, 1285โ1290. MR 1322921, DOI 10.1090/S0002-9939-96-03295-9
- J. S. Frame, The classes and representations of the groups of $27$ lines and $28$ bitangents, Ann. Mat. Pura Appl. (4) 32 (1951), 83โ119. MR 47038, DOI 10.1007/BF02417955
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no.ย 1, 153โ215. MR 862716, DOI 10.1007/BF01389157
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no.ย 3, 599โ635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes รtudes Sci. Publ. Math. 67 (1988), 145โ202. MR 972345, DOI 10.1007/BF02699129
- George Lusztig, Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp.ย 217โ275. With errata for Part I [Inst. Hautes รtudes Sci. Publ. Math. No. 67 (1988), 145โ202; MR0972345 (90e:22029)]. MR 1357201, DOI 10.1090/S1088-4165-02-00172-3
- G. Lusztig, Cuspidal local systems and graded Hecke algebras. III, Represent. Theory 6 (2002), 202โ242. MR 1927954, DOI 10.1090/S1088-4165-02-00172-3
- Goran Muiฤ, The unitary dual of $p$-adic $G_2$, Duke Math. J. 90 (1997), no.ย 3, 465โ493. MR 1480543, DOI 10.1215/S0012-7094-97-09012-8
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173โ207. MR 442103, DOI 10.1007/BF01390009
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no.ย 3, 279โ293. MR 491988, DOI 10.1007/BF01403165
- Marko Tadiฤ, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. รcole Norm. Sup. (4) 19 (1986), no.ย 3, 335โ382. MR 870688, DOI 10.24033/asens.1510
- David A. Vogan Jr., Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), no.ย 1, 141โ187. MR 750719, DOI 10.2307/2007074
- David A. Vogan Jr., The unitary dual of $\textrm {GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no.ย 3, 449โ505. MR 827363, DOI 10.1007/BF01394418
Additional Information
- Dan Ciubotaru
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 754534
- Email: ciubo@math.mit.edu
- Received by editor(s): November 15, 2005
- Received by editor(s) in revised form: August 23, 2006
- Published electronically: October 25, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 10 (2006), 435-480
- MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-06-00301-3
- MathSciNet review: 2266699