On Mirković-Vilonen cycles and crystal combinatorics
Authors:
Pierre Baumann and Stéphane Gaussent
Journal:
Represent. Theory 12 (2008), 83-130
MSC (2000):
Primary 20G05; Secondary 05E15, 14M15, 17B10, 22E67
DOI:
https://doi.org/10.1090/S1088-4165-08-00322-1
Published electronically:
March 5, 2008
MathSciNet review:
2390669
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $G$ be a complex connected reductive group and let $G^{\vee }$ be its Langlands dual. Let us choose a triangular decomposition ${\mathfrak n}^{-,{\vee }} \oplus {\mathfrak h}^{\vee }\oplus {\mathfrak n}^{+,{\vee }}$ of the Lie algebra of $G^{\vee }$. Braverman, Finkelberg and Gaitsgory show that the set of all Mirković-Vilonen cycles in the affine Grassmannian $G\bigl (\mathbb C((t))\bigr )/G\bigl (\mathbb C[[t]]\bigr )$ is a crystal isomorphic to the crystal of the canonical basis of $U({\mathfrak n}^{+,{\vee }})$. Starting from the string parameter of an element of the canonical basis, we give an explicit description of a dense subset of the associated MV cycle. As a corollary, we show that the varieties involved in Lusztig’s algebraic-geometric parametrization of the canonical basis are closely related to MV cycles. In addition, we prove that the bijection between LS paths and MV cycles constructed by Gaussent and Littelmann is an isomorphism of crystals.
- Jared E. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116 (2003), no. 3, 567–588. MR 1958098, DOI https://doi.org/10.1215/S0012-7094-03-11636-1
- Arnaud Beauville and Yves Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), no. 2, 385–419. MR 1289330
- A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, preprint available at http\string://www.math.uchicago.edu/\string mitya/langlands.html.
- Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), no. 1, 49–149. MR 1405449, DOI https://doi.org/10.1006/aima.1996.0057
- Arkady Berenstein and Andrei Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), no. 1, 128–166. MR 1456321, DOI https://doi.org/10.1007/PL00000363
- Arkady Berenstein and Andrei Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77–128. MR 1802793, DOI https://doi.org/10.1007/s002220000102
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, DOI https://doi.org/10.2307/1970915
- Alexander Braverman, Michael Finkelberg, and Dennis Gaitsgory, Uhlenbeck spaces via affine Lie algebras, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 17–135. MR 2181803, DOI https://doi.org/10.1007/0-8176-4467-9_2
- Alexander Braverman and Dennis Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (2001), no. 3, 561–575. MR 1828302, DOI https://doi.org/10.1215/S0012-7094-01-10736-9
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923
- S. Gaussent and P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (2005), no. 1, 35–88. MR 2126496, DOI https://doi.org/10.1215/S0012-7094-04-12712-5
- V. Ginzburg, Perverse sheaves on a loop group and Langlands duality, preprint arXiv:alg-geom/9511007.
- J. Kamnitzer, Mirković-Vilonen cycles and polytopes, preprint arXiv:math.AG/0501365.
- Joel Kamnitzer, The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math. 215 (2007), no. 1, 66–93. MR 2354986, DOI https://doi.org/10.1016/j.aim.2007.03.012
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI https://doi.org/10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485. MR 1203234, DOI https://doi.org/10.1215/S0012-7094-93-06920-7
- Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858. MR 1240605, DOI https://doi.org/10.1215/S0012-7094-93-07131-1
- Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR 1357199
- Masaki Kashiwara and Yoshihisa Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9–36. MR 1458969, DOI https://doi.org/10.1215/S0012-7094-97-08902-X
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198
- Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499–525. MR 1356780, DOI https://doi.org/10.2307/2118553
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI https://doi.org/10.1090/S0894-0347-1990-1035415-6
- George Lusztig, Introduction to quantized enveloping algebras, New developments in Lie theory and their applications (Córdoba, 1989) Progr. Math., vol. 105, Birkhäuser Boston, Boston, MA, 1992, pp. 49–65. MR 1190735, DOI https://doi.org/10.1007/978-1-4612-2978-0_3
- George Lusztig, An algebraic-geometric parametrization of the canonical basis, Adv. Math. 120 (1996), no. 1, 173–190. MR 1392278, DOI https://doi.org/10.1006/aima.1996.0036
- Ivan Mirković and Kari Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), no. 1, 13–24. MR 1748284, DOI https://doi.org/10.4310/MRL.2000.v7.n1.a2
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI https://doi.org/10.4007/annals.2007.166.95
- Sophie Morier-Genoud, Relèvement géométrique de la base canonique et involution de Schützenberger, C. R. Math. Acad. Sci. Paris 337 (2003), no. 6, 371–374 (French, with English and French summaries). MR 2015078, DOI https://doi.org/10.1016/j.crma.2003.07.001
- Yoshihisa Saito, PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 209–232. MR 1265471, DOI https://doi.org/10.2977/prims/1195166130
- Mitsuhiro Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra 9 (1981), no. 8, 841–882. MR 611561, DOI https://doi.org/10.1080/00927878108822621
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20G05, 05E15, 14M15, 17B10, 22E67
Retrieve articles in all journals with MSC (2000): 20G05, 05E15, 14M15, 17B10, 22E67
Additional Information
Pierre Baumann
Affiliation:
Institut de Recherche Mathématique Avancée, Université Louis Pasteur et CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France
Email:
baumann@math.u-strasbg.fr
Stéphane Gaussent
Affiliation:
Institut Élie Cartan, Unité Mixte de Recherche 7502, Nancy-Université, CNRS, INRIA, Boulevard des Aiguillettes, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
Email:
Stephane.Gaussent@iecn.u-nancy.fr
Keywords:
Affine Grassmannian,
Mirković-Vilonen cycle,
crystal
Received by editor(s):
April 26, 2007
Received by editor(s) in revised form:
October 17, 2007
Published electronically:
March 5, 2008
Additional Notes:
Both authors are members of the European Research Training Network “LieGrits”, contract no. MRTN-CT 2003-505078.
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.