Existence of Kirillov–Reshetikhin crystals for nonexceptional types
HTML articles powered by AMS MathViewer
- by Masato Okado and Anne Schilling PDF
- Represent. Theory 12 (2008), 186-207 Request permission
Erratum: Represent. Theory 12 (2008), 499-500.
Abstract:
Using the methods of Kang et al. and recent results on the characters of Kirillov–Reshetikhin modules by Nakajima and Hernandez, the existence of Kirillov–Reshetikhin crystals $B^{r,s}$ is established for all nonexceptional affine types. We also prove that the crystals $B^{r,s}$ of type $B_n^{(1)}$, $D_n^{(1)}$, and $A_{2n-1}^{(2)}$ are isomorphic to recently constructed combinatorial crystals for $r$ not a spin node.References
- Jonathan Beck and Hiraku Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J. 123 (2004), no. 2, 335–402. MR 2066942, DOI 10.1215/S0012-7094-04-12325-2X
- Georgia Benkart, Igor Frenkel, Seok-Jin Kang, and Hyeonmi Lee, Level 1 perfect crystals and path realizations of basic representations at $q=0$, Int. Math. Res. Not. , posted on (2006), Art. ID 10312, 28. MR 2272099, DOI 10.1155/IMRN/2006/10312
- Vyjayanthi Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Internat. Math. Res. Notices 12 (2001), 629–654. MR 1836791, DOI 10.1155/S1073792801000332
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR 1357195, DOI 10.1007/BF00750760
- Vyjayanthi Chari and Andrew Pressley, Twisted quantum affine algebras, Comm. Math. Phys. 196 (1998), no. 2, 461–476. MR 1645027, DOI 10.1007/s002200050431
- P. Di Francesco, R. Kedem, Proof of the combinatorial Kirillov-Reshetikhin conjecture, preprint arXiv:0710.4415.
- Goro Hatayama, Atsuo Kuniba, Masato Okado, Taichiro Takagi, and Zengo Tsuboi, Paths, crystals and fermionic formulae, MathPhys odyssey, 2001, Prog. Math. Phys., vol. 23, Birkhäuser Boston, Boston, MA, 2002, pp. 205–272. MR 1903978
- G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, Remarks on fermionic formula, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 243–291. MR 1745263, DOI 10.1090/conm/248/03826
- David Hernandez, The Kirillov-Reshetikhin conjecture and solutions of $T$-systems, J. Reine Angew. Math. 596 (2006), 63–87. MR 2254805, DOI 10.1515/CRELLE.2006.052
- D. Hernandez, Kirillov-Reshetikhin conjecture: The general case, preprint arXiv:0704.2838.
- Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971, DOI 10.1090/gsm/042
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449–484. MR 1187560, DOI 10.1142/s0217751x92003896
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992), no. 3, 499–607. MR 1194953, DOI 10.1215/S0012-7094-92-06821-9
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413. MR 1262212, DOI 10.1215/S0012-7094-94-07317-1
- Masaki Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117–175. MR 1890649, DOI 10.1215/S0012-9074-02-11214-9
- Masaki Kashiwara and Toshiki Nakashima, Crystal graphs for representations of the $q$-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345. MR 1273277, DOI 10.1006/jabr.1994.1114
- Yoshiyuki Koga, Level one perfect crystals for $B^{(1)}_n,C^{(1)}_n$, and $D^{(1)}_n$, J. Algebra 217 (1999), no. 1, 312–334. MR 1700489, DOI 10.1006/jabr.1998.7806
- Atsuo Kuniba and Tomoki Nakanishi, The Bethe equation at $q=0$, the Möbius inversion formula, and weight multiplicities. II. The $X_n$ case, J. Algebra 251 (2002), no. 2, 577–618. MR 1917385, DOI 10.1006/jabr.2001.8774
- Atsuo Kuniba, Tomoki Nakanishi, and Zengo Tsuboi, The canonical solutions of the $Q$-systems and the Kirillov-Reshetikhin conjecture, Comm. Math. Phys. 227 (2002), no. 1, 155–190. MR 1903843, DOI 10.1007/s002200200631
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Hiraku Nakajima, Extremal weight modules of quantum affine algebras, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 343–369. MR 2074599, DOI 10.2969/aspm/04010343
- Hiraku Nakajima, $t$-analogs of $q$-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259–274. MR 1993360, DOI 10.1090/S1088-4165-03-00164-X
- H. Nakajima, $t$-analogues of $q$-characters of quantum affine algebras of type $E_6,E_7,E_8$, preprint arXiv:math.QA/0606637.
- Satoshi Naito and Daisuke Sagaki, Construction of perfect crystals conjecturally corresponding to Kirillov-Reshetikhin modules over twisted quantum affine algebras, Comm. Math. Phys. 263 (2006), no. 3, 749–787. MR 2211823, DOI 10.1007/s00220-005-1515-2
- M. Okado, Existence of Crystal Bases for Kirillov-Reshetikhin Modules of Type $D$, Publ. RIMS 43 (2007), 977–1004.
- Masato Okado, Anne Schilling, and Mark Shimozono, Virtual crystals and fermionic formulas of type $D^{(2)}_{n+1},A^{(2)}_{2n}$, and $C^{(1)}_n$, Represent. Theory 7 (2003), 101–163. MR 1973369, DOI 10.1090/S1088-4165-03-00155-9
- Masato Okado, Anne Schilling, and Mark Shimozono, Virtual crystals and Kleber’s algorithm, Comm. Math. Phys. 238 (2003), no. 1-2, 187–209. MR 1989674, DOI 10.1007/s00220-003-0855-z
- A. Schilling, The combinatorial structure of Kirillov–Reshetikhin crystals of type $D_n^{(1)}$, $B_n^{(1)}$, $A_{2n-1}^{(2)}$, J. Algebra, 319 (2008), 2938–2962.
- Mark Shimozono, Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002), no. 2, 151–187. MR 1887233, DOI 10.1023/A:1013894920862
- P. Sternberg, Applications of crystal bases to current problems in representation theory, Ph.D. thesis, UC Davis 2006 (available at arXiv:math.QA/0610704).
- Michela Varagnolo and Eric Vasserot, Canonical bases and quiver varieties, Represent. Theory 7 (2003), 227–258. MR 1990661, DOI 10.1090/S1088-4165-03-00154-7
- Shigenori Yamane, Perfect crystals of $U_q(G^{(1)}_2)$, J. Algebra 210 (1998), no. 2, 440–486. MR 1662347, DOI 10.1006/jabr.1998.7597
Additional Information
- Masato Okado
- Affiliation: Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Email: okado@sigmath.es.osaka-u.ac.jp
- Anne Schilling
- Affiliation: Department of Mathematics, University of California, One Shields Avenue, Davis, California 95616-8633
- MR Author ID: 352840
- ORCID: 0000-0002-2601-7340
- Email: anne@math.ucdavis.edu
- Received by editor(s): August 8, 2007
- Received by editor(s) in revised form: February 26, 2008
- Published electronically: April 14, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Represent. Theory 12 (2008), 186-207
- MSC (2000): Primary 17B37, 81R50; Secondary 05E15, 81R10
- DOI: https://doi.org/10.1090/S1088-4165-08-00329-4
- MathSciNet review: 2403558
Dedicated: Dedicated to Professor Masaki Kashiwara on his sixtieth birthday