On the connectedness of Deligne-Lusztig varieties
HTML articles powered by AMS MathViewer
- by Ulrich Görtz
- Represent. Theory 13 (2009), 1-7
- DOI: https://doi.org/10.1090/S1088-4165-09-00344-6
- Published electronically: January 21, 2009
- PDF | Request permission
Abstract:
We give a criterion which determines when a union of one-dimensional Deligne-Lusztig varieties has a connected closure. We obtain a new, short proof of the connectedness criterion for Deligne-Lusztig varieties due to Lusztig.References
- Cédric Bonnafé and Raphaël Rouquier, On the irreducibility of Deligne-Lusztig varieties, C. R. Math. Acad. Sci. Paris 343 (2006), no. 1, 37–39 (English, with English and French summaries). MR 2241956, DOI 10.1016/j.crma.2006.04.014
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- F. Digne and J. Michel, Endomorphisms of Deligne-Lusztig varieties, Nagoya Math. J. 183 (2006), 35–103. MR 2253886, DOI 10.1017/S0027763000009260
- T. Ekedahl, G. van der Geer, Cycle classes of the E-O stratification on the moduli of abelian varieties, arXiv:math.AG/0412272v2.
- Ulrich Görtz, On the flatness of local models for the symplectic group, Adv. Math. 176 (2003), no. 1, 89–115. MR 1978342, DOI 10.1016/S0001-8708(02)00062-2
- U. Görtz, C.-F. Yu, Supersingular Kottwitz-Rapoport strata and Deligne-Lusztig varieties, arXiv:math/0802.3260v2.
- U. Görtz, C.-F. Yu, The supersingular locus in Siegel modular varieties with Iwahori level structure, arXiv:0807.1229v2.
- Burkhard Haastert, Die Quasiaffinität der Deligne-Lusztig-Varietäten, J. Algebra 102 (1986), no. 1, 186–193 (German). MR 853238, DOI 10.1016/0021-8693(86)90135-3
- Thomas J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 583–642. MR 2192017
- R. Kottwitz and M. Rapoport, Minuscule alcoves for $\textrm {GL}_n$ and $G\textrm {Sp}_{2n}$, Manuscripta Math. 102 (2000), no. 4, 403–428. MR 1785323, DOI 10.1007/s002290070034
- G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 453885, DOI 10.1007/BF01408569
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617, DOI 10.1090/cbms/039
- G. Lusztig, A class of perverse sheaves on a partial flag manifold, Represent. Theory 11 (2007), 122–171. MR 2336607, DOI 10.1090/S1088-4165-07-00320-2
- Frans Oort, A stratification of a moduli space of abelian varieties, Moduli of abelian varieties (Texel Island, 1999) Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 345–416. MR 1827027, DOI 10.1007/978-3-0348-8303-0_{1}3
- Michael Rapoport, A guide to the reduction modulo $p$ of Shimura varieties, Astérisque 298 (2005), 271–318 (English, with English and French summaries). Automorphic forms. I. MR 2141705
- M. Rapoport and Th. Zink, Period spaces for $p$-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996. MR 1393439, DOI 10.1515/9781400882601
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
- Eva Viehmann, Connected components of closed affine Deligne-Lusztig varieties, Math. Ann. 340 (2008), no. 2, 315–333. MR 2368982, DOI 10.1007/s00208-007-0153-8
Bibliographic Information
- Ulrich Görtz
- Affiliation: Mathematisches Institut, Beringstr. 1, 53115 Bonn, Germany
- Email: ugoertz@math.uni-bonn.de
- Received by editor(s): September 19, 2008
- Received by editor(s) in revised form: December 8, 2008
- Published electronically: January 21, 2009
- Additional Notes: The author was partially supported by a Heisenberg grant and by the SFB/TR 45 “Periods, Moduli Spaces and Arithmetic of Algebraic Varieties” of the DFG (German Research Foundation)
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 13 (2009), 1-7
- MSC (2000): Primary 14L35; Secondary 20G40
- DOI: https://doi.org/10.1090/S1088-4165-09-00344-6
- MathSciNet review: 2471197