## Nilpotent orbits in the dual of classical Lie algebras in characteristic $2$ and the Springer correspondence

HTML articles powered by AMS MathViewer

- by Ting Xue PDF
- Represent. Theory
**13**(2009), 609-635 Request permission

## Abstract:

Let $G$ be a simply connected algebraic group of type $B$, $C$ or $D$ over an algebraically closed field of characteristic $2$. We construct a Springer correspondence for the dual vector space of the Lie algebra of $G$. In particular, we classify the nilpotent orbits in the duals of symplectic and orthogonal Lie algebras over algebraically closed or finite fields of characteristic $2$.## References

- A. A. Beĭlinson, J. Bernstein, and P. Deligne,
*Faisceaux pervers*, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR**751966** - Wim H. Hesselink,
*Nilpotency in classical groups over a field of characteristic $2$*, Math. Z.**166**(1979), no. 2, 165–181. MR**525621**, DOI 10.1007/BF01214043 - Jens Carsten Jantzen,
*Nilpotent orbits in representation theory*, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR**2042689** - V. Kac and B. Weisfeiler,
*Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic $p$*, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math.**38**(1976), no. 2, 136–151. MR**0417308**, DOI 10.1016/1385-7258(76)90059-7 - Reinhardt Kiehl and Rainer Weissauer,
*Weil conjectures, perverse sheaves and $l$’adic Fourier transform*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 42, Springer-Verlag, Berlin, 2001. MR**1855066**, DOI 10.1007/978-3-662-04576-3 - David B. Leep and Laura Mann Schueller,
*Classification of pairs of symmetric and alternating bilinear forms*, Exposition. Math.**17**(1999), no. 5, 385–414. MR**1733879** - G. Lusztig,
*Intersection cohomology complexes on a reductive group*, Invent. Math.**75**(1984), no. 2, 205–272. MR**732546**, DOI 10.1007/BF01388564 - G. Lusztig,
*Character sheaves on disconnected groups. II*, Represent. Theory**8**(2004), 72–124. MR**2048588**, DOI 10.1090/S1088-4165-04-00238-9 - George Lusztig,
*Character sheaves. II, III*, Adv. in Math.**57**(1985), no. 3, 226–265, 266–315. MR**806210**, DOI 10.1016/0001-8708(85)90064-7 - G. Lusztig,
*A class of irreducible representations of a Weyl group*, Nederl. Akad. Wetensch. Indag. Math.**41**(1979), no. 3, 323–335. MR**546372**, DOI 10.1016/1385-7258(79)90036-2 - James S. Milne,
*Étale cohomology*, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR**559531** - T. A. Springer,
*Linear algebraic groups*, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR**1642713**, DOI 10.1007/978-0-8176-4840-4 - T. Xue, Nilpotent orbits in classical Lie algebras over finite fields of characteristic 2 and the Springer correspondence. Represent. Theory 13 (2009), 371–390.

## Additional Information

**Ting Xue**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: txue@math.mit.edu
- Received by editor(s): February 21, 2009
- Received by editor(s) in revised form: September 1, 2009
- Published electronically: November 4, 2009
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**13**(2009), 609-635 - MSC (2010): Primary 20G15
- DOI: https://doi.org/10.1090/S1088-4165-09-00364-1
- MathSciNet review: 2558787