Admissible diagrams in quantum nilpotent algebras and combinatoric properties of Weyl groups
HTML articles powered by AMS MathViewer
- by Antoine Mériaux and Gérard Cauchon
- Represent. Theory 14 (2010), 645-687
- DOI: https://doi.org/10.1090/S1088-4165-2010-00382-9
- Published electronically: November 1, 2010
- PDF | Request permission
Abstract:
Consider a complex simple Lie algebra $\mathfrak g$ of rank $n$. Denote by $\Pi$ a system of simple roots, by $W$ the corresponding Weyl group, consider a reduced expression $w = s_{\alpha _{1}} \circ \cdots \circ s_{\alpha _{t}}$ (each $\alpha _{i}\in \Pi$) of some $w \in W$ and call diagram any subset of $\lBrack 1, \ldots ,t \rBrack$. We denote by ${U^{+}[w]}$ (or $U_{q}^{w}(\mathfrak {g})$) the “quantum nilpotent” algebra as defined by Jantzen in 1996
We prove (theorem 5.3.1) that the positive diagrams naturally associated with the positive subexpressions (of the reduced expression of $w$ chosen above) in the sense of R. Marsh and K. Rietsch (or equivalently the subexpressions without defect in the sense of V. Deodhar), coincide with the admissible diagrams constructed by G. Cauchon which describe the natural stratification of $Spec({U^{+}[w]})$.
This theorem implies in particular (corollaries 5.3.1 and 5.3.2):
-
The map $\zeta : \Delta = \{j_{1}<\cdots < j_{s}\}\mapsto u = s_{\alpha _{j_{1}}}\circ \cdots \circ s_{\alpha _{j_{s}}}$ is a bijection from the set of admissible diagrams onto the set $\{u \in W \mbox { } | \mbox { } u \mbox { } \leq \mbox { } w \}$.
-
For each admissible diagram $\Delta = \{j_{1}<\cdots < j_{s}\}, s_{\alpha _{j_{1}}}\circ \cdots \circ s_{\alpha _{j_{s}}}$ is a reduced expression of $u= \zeta (\Delta )$.
-
The map $\zeta ^{\prime }: \Delta = \{j_{1}< \cdots < j_{s}\}\mapsto u^{\prime } = s_{\alpha _{j_{s}}}\circ \cdots \circ s_{\alpha _{j_{1}}}$ is a bijection from the set of admissible diagrams onto the set $\{u \in W | u \leq v = w^{-1} \}$.
-
For each admissible diagram $\Delta = \{j_{1}<\cdots <j_{s}\}, s_{\alpha _{j_{s}}}\circ \cdots \circ s_{\alpha _{j_{1}}}$ is a reduced expression of $u^{\prime } = \zeta ^{\prime } (\Delta )$.
If the Lie algebra $\mathfrak {g}$ is of type $A_{n}$ and $w$ is chosen in order that $U^+[w]$ is the algebra of quantum matrices $O_{q}(M_{p,m}(k))$ with $m = n-p+1$ (see section 2.1), then, the admissible diagrams are the $\hbox {\rotatedown {$Γ$}}$-diagrams in the sense of A. Postnikov (http://arxiv.org/abs/math/0609764). In this particular case, the assertions 3 and 4 have also been proved (with quite different methods) by A. Postnikov and by T. Lam and L. Williams.
References
- J. Alev and F. Dumas, Sur le corps des fractions de certaines algèbres quantiques, J. Algebra 170 (1994), no. 1, 229–265 (French, with English summary). MR 1302839, DOI 10.1006/jabr.1994.1336
- Nicolás Andruskiewitsch and François Dumas, On the automorphisms of $U_q^+(\mathfrak {g})$, Quantum groups, IRMA Lect. Math. Theor. Phys., vol. 12, Eur. Math. Soc., Zürich, 2008, pp. 107–133. MR 2432991, DOI 10.4171/047-1/4
- Ken A. Brown and Ken R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR 1898492, DOI 10.1007/978-3-0348-8205-7
- Gérard Cauchon, Effacement des dérivations et spectres premiers des algèbres quantiques, J. Algebra 260 (2003), no. 2, 476–518 (French, with English summary). MR 1967309, DOI 10.1016/S0021-8693(02)00542-2
- Gérard Cauchon, Spectre premier de $O_q(M_n(k))$: image canonique et séparation normale, J. Algebra 260 (2003), no. 2, 519–569 (French, with English summary). MR 1967310, DOI 10.1016/S0021-8693(02)00543-4
- Vinay V. Deodhar, A combinatorial setting for questions in Kazhdan-Lusztig theory, Geom. Dedicata 36 (1990), no. 1, 95–119. MR 1065215, DOI 10.1007/BF00181467
- K. R. Goodearl and E. S. Letzter, Prime factor algebras of the coordinate ring of quantum matrices, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1017–1025. MR 1211579, DOI 10.1090/S0002-9939-1994-1211579-1
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Maria Gorelik, The prime and the primitive spectra of a quantum Bruhat cell translate, J. Algebra 227 (2000), no. 1, 211–253. MR 1754232, DOI 10.1006/jabr.1999.8235
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- Timothy J. Hodges, Thierry Levasseur, and Margarita Toro, Algebraic structure of multiparameter quantum groups, Adv. Math. 126 (1997), no. 1, 52–92. MR 1440253, DOI 10.1006/aima.1996.1612
- Jens Carsten Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1359532, DOI 10.1090/gsm/006
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966, DOI 10.1007/978-3-642-78400-2
- Stéphane Launois, Combinatorics of $\scr H$-primes in quantum matrices, J. Algebra 309 (2007), no. 1, 139–167. MR 2301235, DOI 10.1016/j.jalgebra.2006.10.023
- S. Launois, T. H. Lenagan, and L. Rigal, Quantum unique factorisation domains, J. London Math. Soc. (2) 74 (2006), no. 2, 321–340. MR 2269632, DOI 10.1112/S0024610706022927
- Serge Levendorskiĭ and Yan Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), no. 1, 141–170. MR 1116413
- Thomas Lam and Lauren Williams, Total positivity for cominuscule Grassmannians, New York J. Math. 14 (2008), 53–99. MR 2383586
- R. J. Marsh and K. Rietsch, Parametrizations of flag varieties, Represent. Theory 8 (2004), 212–242. MR 2058727, DOI 10.1090/S1088-4165-04-00230-4
- A. Mériaux, Les diagrammes de Cauchon pour $U_{q}^{+}(\mathfrak {g})$, J. Algebra 323 (2010), 1060-1097.
- A. Postnikov, Total positivity, Grassmannians and Networks, Preprint, 2006: http:// arxiv.org/abs/math/0609764.
- M. Yakimov, Invariant prime ideals in quantizations of nilpotent Lie algebras, Preprint, 2009: http://arxiv.org/abs/0905.0852
- Hiroyuki Yamane, A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type $A_N$, Publ. Res. Inst. Math. Sci. 25 (1989), no. 3, 503–520. MR 1018513, DOI 10.2977/prims/1195173355
Bibliographic Information
- Antoine Mériaux
- Affiliation: Laboratoire d’équations aux dérivées partielles et physique mathématique, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France.
- Email: antoine.meriaux@univ-reims.fr
- Gérard Cauchon
- Affiliation: Laboratoire d’équations aux dérivées partielles et physique mathématique, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
- Email: gerard.cauchon@univ-reims.fr
- Received by editor(s): July 24, 2008
- Received by editor(s) in revised form: March 24, 2010
- Published electronically: November 1, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 14 (2010), 645-687
- MSC (2010): Primary 17B37; Secondary 16T20
- DOI: https://doi.org/10.1090/S1088-4165-2010-00382-9
- MathSciNet review: 2736313