From conjugacy classes in the Weyl group to unipotent classes
Author:
G. Lusztig
Journal:
Represent. Theory 15 (2011), 494-530
MSC (2010):
Primary 20G99
DOI:
https://doi.org/10.1090/S1088-4165-2011-00396-4
Published electronically:
June 8, 2011
MathSciNet review:
2833465
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $G$ be a connected reductive algebraic group over an algebraic closed field. We define a (surjective) map from the set of conjugacy classes in the Weyl group to the set of unipotent classes in $G$.
- R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59. MR 318337
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI https://doi.org/10.2307/1971021
- Erich W. Ellers and Nikolai Gordeev, Intersection of conjugacy classes with Bruhat cells in Chevalley groups, Pacific J. Math. 214 (2004), no. 2, 245–261. MR 2042932, DOI https://doi.org/10.2140/pjm.2004.214.245
- Meinolf Geck, On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes, Doc. Math. 1 (1996), No. 15, 293–317. MR 1418951
- M.Geck, G.Hiss, F.Lübeck, G.Malle and G.Pfeiffer, A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175-210.
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Noriaki Kawanaka, Unipotent elements and characters of finite Chevalley groups, Osaka Math. J. 12 (1975), no. 2, 523–554. MR 384914
- D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, DOI https://doi.org/10.1007/BF02787119
- G.Lusztig, On the reflection representation of a finite Chevalley group, Representation theory of Lie groups, LMS Lect. Notes Ser. 34, Cambridge Univ. Press, 1979, pp. 325-337.
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472
- George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103–155. MR 849848, DOI https://doi.org/10.1016/0001-8708%2886%2990071-X
- George Lusztig, Green functions and character sheaves, Ann. of Math. (2) 131 (1990), no. 2, 355–408. MR 1043271, DOI https://doi.org/10.2307/1971496
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442
- G.Lusztig, On some partitions of a flag manifold, arxiv:0906.1505.
- F.Lübeck, http://www.math.rwth-aachen.de/~Frank.Luebeck /chev/Green/.
- Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups $E_{7}$ and $E_{8}$, Tokyo J. Math. 3 (1980), no. 2, 391–461. MR 605099, DOI https://doi.org/10.3836/tjm/1270473003
- Toshiaki Shoji, Character sheaves and almost characters of reductive groups. I, II, Adv. Math. 111 (1995), no. 2, 244–313, 314–354. MR 1318530, DOI https://doi.org/10.1006/aima.1995.1024
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610
- N. Spaltenstein, On the generalized Springer correspondence for exceptional groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 317–338. MR 803340, DOI https://doi.org/10.2969/aspm/00610317
- N. Spaltenstein, Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups, Astérisque 168 (1988), 10–11, 191–217. Orbites unipotentes et représentations, I. MR 1021497
- N. Spaltenstein, On the Kazhdan-Lusztig map for exceptional Lie algebras, Adv. Math. 83 (1990), no. 1, 48–74. MR 1069387, DOI https://doi.org/10.1016/0001-8708%2890%2990068-X
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20G99
Retrieve articles in all journals with MSC (2010): 20G99
Additional Information
G. Lusztig
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
MR Author ID:
117100
Received by editor(s):
April 22, 2010
Received by editor(s) in revised form:
August 11, 2010
Published electronically:
June 8, 2011
Additional Notes:
Supported in part by the National Science Foundation
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.