Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2024 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

From conjugacy classes in the Weyl group to unipotent classes
HTML articles powered by AMS MathViewer

by G. Lusztig
Represent. Theory 15 (2011), 494-530
DOI: https://doi.org/10.1090/S1088-4165-2011-00396-4
Published electronically: June 8, 2011

Abstract:

Let $G$ be a connected reductive algebraic group over an algebraic closed field. We define a (surjective) map from the set of conjugacy classes in the Weyl group to the set of unipotent classes in $G$.
References
  • R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59. MR 318337
  • P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
  • Erich W. Ellers and Nikolai Gordeev, Intersection of conjugacy classes with Bruhat cells in Chevalley groups, Pacific J. Math. 214 (2004), no. 2, 245–261. MR 2042932, DOI 10.2140/pjm.2004.214.245
  • Meinolf Geck, On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes, Doc. Math. 1 (1996), No. 15, 293–317. MR 1418951
  • M.Geck, G.Hiss, F.Lübeck, G.Malle and G.Pfeiffer, A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175-210.
  • Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
  • Noriaki Kawanaka, Unipotent elements and characters of finite Chevalley groups, Osaka Math. J. 12 (1975), no. 2, 523–554. MR 384914
  • D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, DOI 10.1007/BF02787119
  • G.Lusztig, On the reflection representation of a finite Chevalley group, Representation theory of Lie groups, LMS Lect. Notes Ser. 34, Cambridge Univ. Press, 1979, pp. 325-337.
  • George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
  • George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103–155. MR 849848, DOI 10.1016/0001-8708(86)90071-X
  • George Lusztig, Green functions and character sheaves, Ann. of Math. (2) 131 (1990), no. 2, 355–408. MR 1043271, DOI 10.2307/1971496
  • G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
  • G.Lusztig, On some partitions of a flag manifold, arxiv:0906.1505.
  • F.Lübeck, http://www.math.rwth-aachen.de/~Frank.Luebeck /chev/Green/.
  • Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups $E_{7}$ and $E_{8}$, Tokyo J. Math. 3 (1980), no. 2, 391–461. MR 605099, DOI 10.3836/tjm/1270473003
  • Toshiaki Shoji, Character sheaves and almost characters of reductive groups. I, II, Adv. Math. 111 (1995), no. 2, 244–313, 314–354. MR 1318530, DOI 10.1006/aima.1995.1024
  • Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
  • N. Spaltenstein, On the generalized Springer correspondence for exceptional groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 317–338. MR 803340, DOI 10.2969/aspm/00610317
  • N. Spaltenstein, Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups, Astérisque 168 (1988), 10–11, 191–217. Orbites unipotentes et représentations, I. MR 1021497
  • N. Spaltenstein, On the Kazhdan-Lusztig map for exceptional Lie algebras, Adv. Math. 83 (1990), no. 1, 48–74. MR 1069387, DOI 10.1016/0001-8708(90)90068-X
  • Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554, DOI 10.1007/BF02684397
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20G99
  • Retrieve articles in all journals with MSC (2010): 20G99
Bibliographic Information
  • G. Lusztig
  • Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
  • MR Author ID: 117100
  • Received by editor(s): April 22, 2010
  • Received by editor(s) in revised form: August 11, 2010
  • Published electronically: June 8, 2011
  • Additional Notes: Supported in part by the National Science Foundation
  • © Copyright 2011 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Represent. Theory 15 (2011), 494-530
  • MSC (2010): Primary 20G99
  • DOI: https://doi.org/10.1090/S1088-4165-2011-00396-4
  • MathSciNet review: 2833465