A geometric proof of the Feigin-Frenkel theorem
HTML articles powered by AMS MathViewer
- by Sam Raskin PDF
- Represent. Theory 16 (2012), 489-512 Request permission
Abstract:
We reprove the theorem of Feigin and Frenkel relating the center of the critical level enveloping algebra of the Kac-Moody algebra for a semisimple Lie algebra to opers (which are certain de Rham local systems with extra structure) for the Langlands dual group. Our proof incorporates a construction of Beilinson and Drinfeld relating the Feigin-Frenkel isomorphism to (more classical) Langlands duality through the geometric Satake theorem.References
- A. Beilinson, Remarks on topological algebras, Mosc. Math. J. 8 (2008), no. 1, 1–20, 183 (English, with English and Russian summaries). MR 2422264, DOI 10.17323/1609-4514-2008-8-1-1-20
- A. Beilinson and V. Drinfeld, “Quantization of Hitchin’s integrable system and Hecke eigensheaves.” Available at: http://math.uchicago.edu/\textasciitilde mitya/langlands/hitchin/BD-hitchin.pdf
- Alexander Beilinson and Vladimir Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR 2058353, DOI 10.1090/coll/051
- Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. MR 2082709, DOI 10.1090/surv/088
- V. G. Drinfel′d, Commutative subrings of certain noncommutative rings, Funkcional. Anal. i Priložen. 11 (1977), no. 1, 11–14, 96 (Russian). MR 0476732
- V. G. Drinfel′d and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81–180 (Russian). MR 760998
- Mircea Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), no. 3, 397–424. With an appendix by David Eisenbud and Edward Frenkel. MR 1856396, DOI 10.1007/s002220100152
- Edward Frenkel, Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), no. 2, 297–404. MR 2146349, DOI 10.1016/j.aim.2004.08.002
- Boris Feigin and Edward Frenkel, Affine Kac-Moody algebras at the critical level and Gel′fand-Dikiĭ algebras, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197–215. MR 1187549, DOI 10.1142/s0217751x92003781
- Edward Frenkel and Dennis Gaitsgory, $D$-modules on the affine Grassmannian and representations of affine Kac-Moody algebras, Duke Math. J. 125 (2004), no. 2, 279–327. MR 2096675, DOI 10.1215/S0012-7094-04-12524-2
- Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69–260. MR 2263193, DOI 10.1007/978-0-8176-4532-8_{3}
- Edward Frenkel and Dennis Gaitsgory, Fusion and convolution: applications to affine Kac-Moody algebras at the critical level, Pure Appl. Math. Q. 2 (2006), no. 4, Special Issue: In honor of Robert D. MacPherson., 1255–1312. MR 2282421, DOI 10.4310/PAMQ.2006.v2.n4.a14
- Edward Frenkel and Dennis Gaitsgory, Geometric realizations of Wakimoto modules at the critical level, Duke Math. J. 143 (2008), no. 1, 117–203. MR 2414746, DOI 10.1215/00127094-2008-017
- Susanna Fishel, Ian Grojnowski, and Constantin Teleman, The strong Macdonald conjecture and Hodge theory on the loop Grassmannian, Ann. of Math. (2) 168 (2008), no. 1, 175–220. MR 2415401, DOI 10.4007/annals.2008.168.175
- Edward Frenkel and Constantin Teleman, Self-extensions of Verma modules and differential forms on opers, Compos. Math. 142 (2006), no. 2, 477–500. MR 2218907, DOI 10.1112/S0010437X05001958
- Robert Gilmer and William Heinzer, The Noetherian property for quotient rings of infinite polynomial rings, Proc. Amer. Math. Soc. 76 (1979), no. 1, 1–7. MR 534377, DOI 10.1090/S0002-9939-1979-0534377-2
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- J. Lurie, “Higher algebra.” Available at: http://math.harvard.edu/\textasciitilde lurie/papers/HigherAlgebra.pdf
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
Additional Information
- Sam Raskin
- Affiliation: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138
- Email: sraskin@math.harvard.edu
- Received by editor(s): June 12, 2011
- Received by editor(s) in revised form: August 21, 2011, and January 3, 2012
- Published electronically: September 20, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 489-512
- MSC (2010): Primary 17B65, 81R10, 14D24
- DOI: https://doi.org/10.1090/S1088-4165-2012-00417-4
- MathSciNet review: 2972556