Geometric local theta correspondence for dual reductive pairs of type II at the Iwahori level
HTML articles powered by AMS MathViewer
- by Banafsheh Farang-Hariri PDF
- Represent. Theory 17 (2013), 610-646 Request permission
Abstract:
In this paper we are interested in the geometric local theta correspondence at the Iwahori level for dual reductive pairs $(G,H)$ of type II over a non-Archimedean field of characteristic $p\neq 2$ in the framework of the geometric Langlands program. We consider the geometric version of the $I_{H}\times I_{G}$-invariants of the Weil representation $\mathcal {S}^{I_{H}\times I_{G}}$ as a bimodule under the action of Iwahori-Hecke algebras $\mathcal {H}_{I_{G}}$ and $\mathcal {H}_{I_{H}}$ and we give some partial geometric description of the corresponding category under the action of Hecke functors. We also define geometric Jacquet functors for any connected reductive group $G$ at the Iwahori level and we show that they commute with the Hecke action of the $\mathcal {H}_{I_{L}}$-subelgebra of $\mathcal {H}_{I_{G}}$ for a Levi subgroup $L$.References
- Sergey Arkhipov and Roman Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, Israel J. Math. 170 (2009), 135–183. With an appendix by Bezrukavnikov and Ivan Mirković. MR 2506322, DOI 10.1007/s11856-009-0024-y
- J. Adams, $L$-functoriality for dual pairs, Astérisque 171-172 (1989), 85–129. Orbites unipotentes et représentations, II. MR 1021501
- James Arthur, On some problems suggested by the trace formula, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 1–49. MR 748504, DOI 10.1007/BFb0073144
- R. Bezrukavnikov. On two geometric realizations of an affine Hecke algebra. arXiv:1209.0403.
- A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287–384. MR 1933587, DOI 10.1007/s00222-002-0237-8
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI 10.1007/BF01390139
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209–216. MR 1996415, DOI 10.1007/s00031-003-0606-4
- M. Emerton, D. Nadler, and K. Vilonen, A geometric Jacquet functor, Duke Math. J. 125 (2004), no. 2, 267–278. MR 2096674, DOI 10.1215/S0012-7094-04-12523-0
- Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69–260. MR 2263193, DOI 10.1007/978-0-8176-4532-8_{3}
- Banafsheh Farang-Hariri, La fonctorialité d’Arthur-Langlands locale géométrique et la correspondance de Howe au niveau Iwahori, C. R. Math. Acad. Sci. Paris 350 (2012), no. 17-18, 813–816 (French, with English and French summaries). MR 2989382, DOI 10.1016/j.crma.2012.09.021
- B. Farang-Hariri, Geometric tamely ramified local theta correspondence in the framework of the geometric Langlands program, http://hal.archives-ouvertes.fr/hal-00756374, 2013.
- D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280. MR 1826370, DOI 10.1007/s002220100122
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016, DOI 10.1007/BF02684396
- Stephen S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), no. 2, 229–255. MR 818351, DOI 10.1007/BF01388961
- Vincent Lafforgue and Sergey Lysenko, Geometric Weil representation: local field case, Compos. Math. 145 (2009), no. 1, 56–88. MR 2480495, DOI 10.1112/S0010437X08003771
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- Sergey Lysenko, Geometric theta-lifting for the dual pair $\Bbb S\Bbb O_{2m},\Bbb S\textrm {p}_{2n}$, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 3, 427–493 (English, with English and French summaries). MR 2839456, DOI 10.24033/asens.2147
- Alberto Mínguez, Correspondance de Howe explicite: paires duales de type II, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 5, 717–741 (French, with English and French summaries). MR 2504432, DOI 10.24033/asens.2080
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
- C. Mœglin, M-F. Vignéras, and J-L. Waldspurger. Correspondances de Howe sur un corps $p$-adique, volume 1291 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.
- Amritanshu Prasad, On Bernstein’s presentation of Iwahori-Hecke algebras and representations of split reductive groups over non-Archimedean local fields, Bull. Kerala Math. Assoc. Special Issue (2005), 31–51 (2007). MR 2250034
- Stephen Rallis, Langlands’ functoriality and the Weil representation, Amer. J. Math. 104 (1982), no. 3, 469–515. MR 658543, DOI 10.2307/2374151
Additional Information
- Banafsheh Farang-Hariri
- Affiliation: Humboldt-Universitët zu Berlin, Institut für Mathematik, Unter den Linden 6, 10099 Berlin, Germany
- Address at time of publication: Université de Paris XI, Laboratoire de Mathématiques, Bât 425, 91405 Orsay Cedex, France
- Email: bfhariri@gmail.com
- Received by editor(s): February 26, 2013
- Received by editor(s) in revised form: September 24, 2013
- Published electronically: December 9, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Represent. Theory 17 (2013), 610-646
- MSC (2010): Primary 14D24, 11F27; Secondary 22E57, 20C08
- DOI: https://doi.org/10.1090/S1088-4165-2013-00448-X
- MathSciNet review: 3139267