## Quantum supergroups II. Canonical basis

HTML articles powered by AMS MathViewer

- by Sean Clark, David Hill and Weiqiang Wang
- Represent. Theory
**18**(2014), 278-309 - DOI: https://doi.org/10.1090/S1088-4165-2014-00453-9
- Published electronically: September 9, 2014
- PDF | Request permission

## Abstract:

Following Kashiwara’s algebraic approach, we construct crystal bases and canonical bases for quantum supergroups of anisotropic type and for their integrable modules.## References

- Georgia Benkart, Seok-Jin Kang, and Masaki Kashiwara,
*Crystal bases for the quantum superalgebra $U_q({\mathfrak {g}}{\mathfrak {l}}(m,n))$*, J. Amer. Math. Soc.**13**(2000), no. 2, 295–331. MR**1694051**, DOI 10.1090/S0894-0347-00-00321-0 - Georgia Benkart, Seok-Jin Kang, and Duncan Melville,
*Quantized enveloping algebras for Borcherds superalgebras*, Trans. Amer. Math. Soc.**350**(1998), no. 8, 3297–3319. MR**1451594**, DOI 10.1090/S0002-9947-98-02058-3 - Sean Clark, Zhaobing Fan, Yiqiang Li, and Weiqiang Wang,
*Quantum supergroups III. Twistors*, Comm. Math. Phys.**332**(2014), no. 1, 415–436. MR**3253707**, DOI 10.1007/s00220-014-2071-4 - Sean Clark, David Hill, and Weiqiang Wang,
*Quantum supergroups I. Foundations*, Transform. Groups**18**(2013), no. 4, 1019–1053. MR**3127986**, DOI 10.1007/s00031-013-9247-4 - Sean Clark and Weiqiang Wang,
*Canonical basis for quantum $\mathfrak {osp}(1|2)$*, Lett. Math. Phys.**103**(2013), no. 2, 207–231. MR**3010460**, DOI 10.1007/s11005-012-0592-3 - Alexander P. Ellis, Mikhail Khovanov, and Aaron D. Lauda,
*The odd nilHecke algebra and its diagrammatics*, Int. Math. Res. Not. IMRN**4**(2014), 991–1062. MR**3168401**, DOI 10.1093/imrn/rns240 - A. Ellis and A. Lauda,
*An odd categorification of $U_q(\mathfrak {sl}_2)$*, arXiv:1307.7816. - Z. Fan and Y. Li,
*Two-parameter quantum algebras, canonical bases and categorifications*, IMRN (to appear), arXiv:1303.2429. - D. Hill and W. Wang,
*Categorification of quantum Kac-Moody superalgebras*, Trans. Amer. Math. Soc. (to appear), arXiv:1202.2769v2. - Kyeonghoon Jeong,
*Crystal bases for Kac-Moody superalgebras*, J. Algebra**237**(2001), no. 2, 562–590. MR**1816704**, DOI 10.1006/jabr.2000.8590 - Seok-Jin Kang, Masaki Kashiwara, and Se-jin Oh,
*Supercategorification of quantum Kac-Moody algebras*, Adv. Math.**242**(2013), 116–162. MR**3055990**, DOI 10.1016/j.aim.2013.04.008 - S.-J. Kang, M. Kashiwara and S. Tsuchioka,
*Quiver Hecke superalgebras*, arXiv:1107.1039. - M. Kashiwara,
*On crystal bases of the $Q$-analogue of universal enveloping algebras*, Duke Math. J.**63**(1991), no. 2, 465–516. MR**1115118**, DOI 10.1215/S0012-7094-91-06321-0 - V. G. Kac,
*Infinite-dimensional algebras, Dedekind’s $\eta$-function, classical Möbius function and the very strange formula*, Adv. in Math.**30**(1978), no. 2, 85–136. MR**513845**, DOI 10.1016/0001-8708(78)90033-6 - J.-H. Kwon,
*Super duality and crystal bases for quantum orthosymplectic superalgebras*, arXiv:1301.1756. - G. Lusztig,
*Canonical bases arising from quantized enveloping algebras*, J. Amer. Math. Soc.**3**(1990), no. 2, 447–498. MR**1035415**, DOI 10.1090/S0894-0347-1990-1035415-6 - George Lusztig,
*Introduction to quantum groups*, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1227098** - Ian M. Musson and Yi Ming Zou,
*Crystal bases for $U_q(\textrm {osp}(1,2r))$*, J. Algebra**210**(1998), no. 2, 514–534. MR**1662280**, DOI 10.1006/jabr.1998.7591 - Weiqiang Wang,
*Double affine Hecke algebras for the spin symmetric group*, Math. Res. Lett.**16**(2009), no. 6, 1071–1085. MR**2576694**, DOI 10.4310/MRL.2009.v16.n6.a14 - Hiroyuki Yamane,
*Quantized enveloping algebras associated with simple Lie superalgebras and their universal $R$-matrices*, Publ. Res. Inst. Math. Sci.**30**(1994), no. 1, 15–87. MR**1266383**, DOI 10.2977/prims/1195166275 - Yi Ming Zou,
*Integrable representations of $U_q(\textrm {osp}(1,2n))$*, J. Pure Appl. Algebra**130**(1998), no. 1, 99–112. MR**1632799**, DOI 10.1016/S0022-4049(97)00088-1

## Bibliographic Information

**Sean Clark**- Affiliation: Department of Mathematics, 567 Lake Hall, Northeastern University, Boston, Massachusetts 02115
- Email: se.clark@neu.ed
**David Hill**- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
- Email: deh4n@virginia.edu
**Weiqiang Wang**- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
- MR Author ID: 339426
- Email: ww9c@virginia.edu
- Received by editor(s): April 16, 2013
- Received by editor(s) in revised form: March 14, 2014
- Published electronically: September 9, 2014
- Additional Notes: The first author was partially supported by the Semester Fellowship from Department of Mathematics, University of Virginia (UVA)

The first and third authors gratefully acknowledge the support and stimulating environment at the Institute of Mathematics, Academia Sinica, Taipei, during their visits in Spring 2013

The third author was partially supported by NSF DMS-1101268 and the UVA Sesqui Fellowship - © Copyright 2014 American Mathematical Society
- Journal: Represent. Theory
**18**(2014), 278-309 - MSC (2010): Primary 17B37
- DOI: https://doi.org/10.1090/S1088-4165-2014-00453-9
- MathSciNet review: 3256709