## Inductive McKay condition for finite simple groups of type $\mathsf {C}$

HTML articles powered by AMS MathViewer

- by Marc Cabanes and Britta Späth PDF
- Represent. Theory
**21**(2017), 61-81 Request permission

## Abstract:

We verify the inductive McKay condition for simple groups of Lie type $\mathsf {C}$, namely finite projective symplectic groups. This contributes to the program of a complete proof of the McKay conjecture for all finite groups via the reduction theorem of Isaacs-Malle-Navarro and the classification of finite simple groups. In an important step we use a new counting argument to determine the stabilizers of irreducible characters of a finite symplectic group in its outer automorphism group. This is completed by analogous results on characters of normalizers of Sylow $d$-tori in those groups.## References

- Michel Broué and Gunter Malle,
*Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis*, Math. Ann.**292**(1992), no. 2, 241–262 (French). MR**1149033**, DOI 10.1007/BF01444619 - Michel Broué and Jean Michel,
*Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées*, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 73–139 (French). MR**1429870** - Marc Cabanes and Michel Enguehard,
*Representation theory of finite reductive groups*, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR**2057756**, DOI 10.1017/CBO9780511542763 - Marc Cabanes and Britta Späth,
*Equivariance and extendibility in finite reductive groups with connected center*, Math. Z.**275**(2013), no. 3-4, 689–713. MR**3127033**, DOI 10.1007/s00209-013-1156-7 - M. Cabanes and B. Späth,
*Equivariant character correspondences and inductive McKay condition for type A*, arXiv:1305.6407. To appear in J. Reine Angew. Math., 2017. - Paul Fong and Bhama Srinivasan,
*The blocks of finite classical groups*, J. Reine Angew. Math.**396**(1989), 122–191. MR**988550** - Daniel Gorenstein, Richard Lyons, and Ronald Solomon,
*The classification of the finite simple groups*, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR**1303592**, DOI 10.1090/surv/040.1 - I. Martin Isaacs,
*Character theory of finite groups*, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR**0460423** - I. M. Isaacs, Gunter Malle, and Gabriel Navarro,
*A reduction theorem for the McKay conjecture*, Invent. Math.**170**(2007), no. 1, 33–101. MR**2336079**, DOI 10.1007/s00222-007-0057-y - Martin W. Liebeck and Gary M. Seitz,
*Unipotent and nilpotent classes in simple algebraic groups and Lie algebras*, Mathematical Surveys and Monographs, vol. 180, American Mathematical Society, Providence, RI, 2012. MR**2883501**, DOI 10.1090/surv/180 - G. Lusztig,
*Irreducible representations of finite classical groups*, Invent. Math.**43**(1977), no. 2, 125–175. MR**463275**, DOI 10.1007/BF01390002 - G. Lusztig,
*On the representations of reductive groups with disconnected centre*, Astérisque**168**(1988), 10, 157–166. Orbites unipotentes et représentations, I. MR**1021495** - Gunter Malle,
*Height 0 characters of finite groups of Lie type*, Represent. Theory**11**(2007), 192–220. MR**2365640**, DOI 10.1090/S1088-4165-07-00312-3 - Gunter Malle and Britta Späth,
*Characters of odd degree*, Ann. of Math. (2)**184**(2016), no. 3, 869–908. MR**3549625**, DOI 10.4007/annals.2016.184.3.6 - John Milnor,
*On isometries of inner product spaces*, Invent. Math.**8**(1969), 83–97. MR**249519**, DOI 10.1007/BF01404612 - Britta Späth,
*The McKay conjecture for exceptional groups and odd primes*, Math. Z.**261**(2009), no. 3, 571–595. MR**2471089**, DOI 10.1007/s00209-008-0340-7 - Britta Späth,
*Sylow $d$-tori of classical groups and the McKay conjecture. I*, J. Algebra**323**(2010), no. 9, 2469–2493. MR**2602390**, DOI 10.1016/j.jalgebra.2010.02.008 - Britta Späth,
*Sylow $d$-tori of classical groups and the McKay conjecture. II*, J. Algebra**323**(2010), no. 9, 2494–2509. MR**2602391**, DOI 10.1016/j.jalgebra.2010.02.007 - Britta Späth,
*Inductive McKay condition in defining characteristic*, Bull. Lond. Math. Soc.**44**(2012), no. 3, 426–438. MR**2966987**, DOI 10.1112/blms/bdr100 - T. A. Springer,
*Regular elements of finite reflection groups*, Invent. Math.**25**(1974), 159–198. MR**354894**, DOI 10.1007/BF01390173 - J. Taylor,
*Action of automorphisms on irreducible characters of symplectic groups*, arXiv:1612.03138, 2016. - G. E. Wall,
*On the conjugacy classes in the unitary, symplectic and orthogonal groups*, J. Austral. Math. Soc.**3**(1963), 1–62. MR**0150210**, DOI 10.1017/S1446788700027622

## Additional Information

**Marc Cabanes**- Affiliation: CNRS, IMJ-PRG, Boite 7012, 75205 Paris Cedex 13, France
- MR Author ID: 211320
- Email: marc.cabanes@imj-prg.fr
**Britta Späth**- Affiliation: Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
- Email: bspaeth@uni-wuppertal.de
- Received by editor(s): September 16, 2016
- Received by editor(s) in revised form: March 29, 2017
- Published electronically: June 14, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Represent. Theory
**21**(2017), 61-81 - MSC (2010): Primary 20C15, 20C33; Secondary 20G40
- DOI: https://doi.org/10.1090/ert/497
- MathSciNet review: 3662374