Inductive McKay condition for finite simple groups of type $\mathsf {C}$
HTML articles powered by AMS MathViewer
- by Marc Cabanes and Britta Späth
- Represent. Theory 21 (2017), 61-81
- DOI: https://doi.org/10.1090/ert/497
- Published electronically: June 14, 2017
- PDF | Request permission
Abstract:
We verify the inductive McKay condition for simple groups of Lie type $\mathsf {C}$, namely finite projective symplectic groups. This contributes to the program of a complete proof of the McKay conjecture for all finite groups via the reduction theorem of Isaacs-Malle-Navarro and the classification of finite simple groups. In an important step we use a new counting argument to determine the stabilizers of irreducible characters of a finite symplectic group in its outer automorphism group. This is completed by analogous results on characters of normalizers of Sylow $d$-tori in those groups.References
- Michel Broué and Gunter Malle, Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis, Math. Ann. 292 (1992), no. 2, 241–262 (French). MR 1149033, DOI 10.1007/BF01444619
- Michel Broué and Jean Michel, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 73–139 (French). MR 1429870
- Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756, DOI 10.1017/CBO9780511542763
- Marc Cabanes and Britta Späth, Equivariance and extendibility in finite reductive groups with connected center, Math. Z. 275 (2013), no. 3-4, 689–713. MR 3127033, DOI 10.1007/s00209-013-1156-7
- M. Cabanes and B. Späth, Equivariant character correspondences and inductive McKay condition for type A, arXiv:1305.6407. To appear in J. Reine Angew. Math., 2017.
- Paul Fong and Bhama Srinivasan, The blocks of finite classical groups, J. Reine Angew. Math. 396 (1989), 122–191. MR 988550
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592, DOI 10.1090/surv/040.1
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- I. M. Isaacs, Gunter Malle, and Gabriel Navarro, A reduction theorem for the McKay conjecture, Invent. Math. 170 (2007), no. 1, 33–101. MR 2336079, DOI 10.1007/s00222-007-0057-y
- Martin W. Liebeck and Gary M. Seitz, Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Mathematical Surveys and Monographs, vol. 180, American Mathematical Society, Providence, RI, 2012. MR 2883501, DOI 10.1090/surv/180
- G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, DOI 10.1007/BF01390002
- G. Lusztig, On the representations of reductive groups with disconnected centre, Astérisque 168 (1988), 10, 157–166. Orbites unipotentes et représentations, I. MR 1021495
- Gunter Malle, Height 0 characters of finite groups of Lie type, Represent. Theory 11 (2007), 192–220. MR 2365640, DOI 10.1090/S1088-4165-07-00312-3
- Gunter Malle and Britta Späth, Characters of odd degree, Ann. of Math. (2) 184 (2016), no. 3, 869–908. MR 3549625, DOI 10.4007/annals.2016.184.3.6
- John Milnor, On isometries of inner product spaces, Invent. Math. 8 (1969), 83–97. MR 249519, DOI 10.1007/BF01404612
- Britta Späth, The McKay conjecture for exceptional groups and odd primes, Math. Z. 261 (2009), no. 3, 571–595. MR 2471089, DOI 10.1007/s00209-008-0340-7
- Britta Späth, Sylow $d$-tori of classical groups and the McKay conjecture. I, J. Algebra 323 (2010), no. 9, 2469–2493. MR 2602390, DOI 10.1016/j.jalgebra.2010.02.008
- Britta Späth, Sylow $d$-tori of classical groups and the McKay conjecture. II, J. Algebra 323 (2010), no. 9, 2494–2509. MR 2602391, DOI 10.1016/j.jalgebra.2010.02.007
- Britta Späth, Inductive McKay condition in defining characteristic, Bull. Lond. Math. Soc. 44 (2012), no. 3, 426–438. MR 2966987, DOI 10.1112/blms/bdr100
- T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198. MR 354894, DOI 10.1007/BF01390173
- J. Taylor, Action of automorphisms on irreducible characters of symplectic groups, arXiv:1612.03138, 2016.
- G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc. 3 (1963), 1–62. MR 0150210, DOI 10.1017/S1446788700027622
Bibliographic Information
- Marc Cabanes
- Affiliation: CNRS, IMJ-PRG, Boite 7012, 75205 Paris Cedex 13, France
- MR Author ID: 211320
- Email: marc.cabanes@imj-prg.fr
- Britta Späth
- Affiliation: Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
- Email: bspaeth@uni-wuppertal.de
- Received by editor(s): September 16, 2016
- Received by editor(s) in revised form: March 29, 2017
- Published electronically: June 14, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Represent. Theory 21 (2017), 61-81
- MSC (2010): Primary 20C15, 20C33; Secondary 20G40
- DOI: https://doi.org/10.1090/ert/497
- MathSciNet review: 3662374