## The unicity of types for depth-zero supercuspidal representations

HTML articles powered by AMS MathViewer

- by Peter Latham PDF
- Represent. Theory
**21**(2017), 590-610 Request permission

## Abstract:

We establish the unicity of types for depth-zero supercuspidal representations of an arbitrary $p$-adic group $G$, showing that each depth-zero supercuspidal representation of $G$ contains a unique conjugacy class of typical representations of maximal compact subgroups of $G$. As a corollary, we obtain an inertial Langlands correspondence for these representations via the Langlands correspondence of DeBacker and Reeder.## References

- J. N. Bernstein,
*Le “centre” de Bernstein*, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32 (French). Edited by P. Deligne. MR**771671** - Colin J. Bushnell and Philip C. Kutzko,
*Smooth representations of reductive $p$-adic groups: structure theory via types*, Proc. London Math. Soc. (3)**77**(1998), no. 3, 582–634. MR**1643417**, DOI 10.1112/S0024611598000574 - Christophe Breuil and Ariane Mézard,
*Multiplicités modulaires et représentations de $\textrm {GL}_2(\textbf {Z}_p)$ et de $\textrm {Gal}(\overline \textbf {Q}_p/\textbf {Q}_p)$ en $l=p$*, Duke Math. J.**115**(2002), no. 2, 205–310 (French, with English and French summaries). With an appendix by Guy Henniart. MR**1944572**, DOI 10.1215/S0012-7094-02-11522-1 - F. Bruhat and J. Tits,
*Groupes réductifs sur un corps local*, Inst. Hautes Études Sci. Publ. Math.**41**(1972), 5–251 (French). MR**327923**, DOI 10.1007/BF02715544 - F. Bruhat and J. Tits,
*Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée*, Inst. Hautes Études Sci. Publ. Math.**60**(1984), 197–376 (French). MR**756316** - Stephen DeBacker and Mark Reeder,
*Depth-zero supercuspidal $L$-packets and their stability*, Ann. of Math. (2)**169**(2009), no. 3, 795–901. MR**2480618**, DOI 10.4007/annals.2009.169.795 - Jessica Fintzen,
*On the Moy–Prasad filtration*, arXiv 1511.00726 (2015). - Peter Latham,
*On the unicity of types in special linear groups*, arXiv 1511.00642 (2015). - Peter Latham,
*Unicity of types for supercuspidal representations of $p$-adic $\mathbf {SL}_2$*, J. Number Theory**162**(2016), 376–390. MR**3448273**, DOI 10.1016/j.jnt.2015.10.008 - I. G. Macdonald,
*Zeta functions attached to finite general linear groups*, Math. Ann.**249**(1980), no. 1, 1–15. MR**575444**, DOI 10.1007/BF01387076 - Lawrence Morris,
*Tamely ramified intertwining algebras*, Invent. Math.**114**(1993), no. 1, 1–54. MR**1235019**, DOI 10.1007/BF01232662 - Lawrence Morris,
*Level zero $\bf G$-types*, Compositio Math.**118**(1999), no. 2, 135–157. MR**1713308**, DOI 10.1023/A:1001019027614 - Allen Moy and Gopal Prasad,
*Unrefined minimal $K$-types for $p$-adic groups*, Invent. Math.**116**(1994), no. 1-3, 393–408. MR**1253198**, DOI 10.1007/BF01231566 - Allen Moy and Gopal Prasad,
*Jacquet functors and unrefined minimal $K$-types*, Comment. Math. Helv.**71**(1996), no. 1, 98–121. MR**1371680**, DOI 10.1007/BF02566411 - Vytautas Paskunas,
*Unicity of types for supercuspidal representations of $\textrm {GL}_N$*, Proc. London Math. Soc. (3)**91**(2005), no. 3, 623–654. MR**2180458**, DOI 10.1112/S0024611505015340 - Peter Schneider and Ulrich Stuhler,
*Representation theory and sheaves on the Bruhat-Tits building*, Inst. Hautes Études Sci. Publ. Math.**85**(1997), 97–191. MR**1471867**, DOI 10.1007/BF02699536

## Additional Information

**Peter Latham**- Affiliation: Department of Mathematics, University of East Anglia, Norwich, United Kingdom
- MR Author ID: 1145038
- Email: peter.latham@kcl.ac.uk
- Received by editor(s): September 13, 2016
- Received by editor(s) in revised form: October 3, 2017, and November 9, 2017
- Published electronically: December 13, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Represent. Theory
**21**(2017), 590-610 - MSC (2010): Primary 22E50
- DOI: https://doi.org/10.1090/ert/511
- MathSciNet review: 3735454