A lower bound for the dimension of a highest weight module
HTML articles powered by AMS MathViewer
- by Daniel Goldstein, Robert Guralnick and Richard Stong PDF
- Represent. Theory 21 (2017), 611-625
Abstract:
For each integer $t>0$ and each simple Lie algebra $\mathfrak {g}$, we determine the least dimension of an irreducible highest weight representation of $\mathfrak {g}$ whose highest weight has width $t$. As a consequence, we classify all irreducible modules whose dimension equals a product of two primes. This consequence, which was in fact the driving force behind our paper, answers a question of N. Katz.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- E. Breuillard and G. Pisier, Remarks on random unitaries and amenable linear groups, in preparation.
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. MR 1606831
- Kathryn E. Hare, The size of characters of compact Lie groups, Studia Math. 129 (1998), no. 1, 1–18. MR 1611918, DOI 10.4064/sm-129-1-1-18
- Jens Carsten Jantzen, Low-dimensional representations of reductive groups are semisimple, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 255–266. MR 1635685
- Nicholas M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, Princeton, NJ, 1990. MR 1081536, DOI 10.1515/9781400882434
- Nicholas M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR 955052, DOI 10.1515/9781400882120
- Nicholas M. Katz, Convolution and equidistribution, Annals of Mathematics Studies, vol. 180, Princeton University Press, Princeton, NJ, 2012. Sato-Tate theorems for finite-field Mellin transforms. MR 2850079
- Frank Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math. 4 (2001), 135–169. MR 1901354, DOI 10.1112/S1461157000000838
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
Additional Information
- Daniel Goldstein
- Affiliation: Center for Communications Research, San Diego, California 92121
- MR Author ID: 709300
- Email: danielgolds@gmail.com
- Robert Guralnick
- Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
- MR Author ID: 78455
- Email: guralnic@usc.edu
- Richard Stong
- Affiliation: Center for Communications Research, San Diego, California 92121
- MR Author ID: 167705
- Email: stong@ccrwest.org
- Received by editor(s): April 1, 2016
- Received by editor(s) in revised form: August 11, 2017
- Published electronically: December 19, 2017
- Additional Notes: The second author was partially supported by NSF grants DMS-1302886 and DMS-1600056.
- © Copyright 2017 Institute for Defense Analyses
- Journal: Represent. Theory 21 (2017), 611-625
- MSC (2010): Primary 17B10, 22E46
- DOI: https://doi.org/10.1090/ert/509
- MathSciNet review: 3738091