## $\mathbb {Z}/m\mathbb {Z}$-graded Lie algebras and perverse sheaves, III: Graded double affine Hecke algebra

HTML articles powered by AMS MathViewer

- by George Lusztig and Zhiwei Yun PDF
- Represent. Theory
**22**(2018), 87-118 Request permission

## Abstract:

In this paper we construct representations of certain graded double affine Hecke algebras (DAHA) with possibly unequal parameters from geometry. More precisely, starting with a simple Lie algebra $\mathfrak {g}$ together with a $\mathbb {Z}/m\mathbb {Z}$-grading $\bigoplus _{i\in \mathbb {Z}/m\mathbb {Z}}\mathfrak {g}_{i}$ and a block of $\mathcal {D}_{G_{\underline 0}}(\mathfrak {g}_{i})$ as introduced in [J. Represent. Theory 21 (2017), pp. 277-321], we attach a graded DAHA and construct its action on the direct sum of spiral inductions in that block. This generalizes results of Vasserot [Duke Math J. 126 (2005), pp. 251-323] and Oblomkov-Yun [Adv. Math 292 (2016), pp. 601-706] which correspond to the case of the principal block.## References

- Joseph Bernstein and Valery Lunts,
*Equivariant sheaves and functors*, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR**1299527**, DOI 10.1007/BFb0073549 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - G. Lusztig,
*Intersection cohomology complexes on a reductive group*, Invent. Math.**75**(1984), no.Β 2, 205β272. MR**732546**, DOI 10.1007/BF01388564 - George Lusztig,
*Fourier transforms on a semisimple Lie algebra over $\textbf {F}_q$*, Algebraic groups Utrecht 1986, Lecture Notes in Math., vol. 1271, Springer, Berlin, 1987, pp.Β 177β188. MR**911139**, DOI 10.1007/BFb0079237 - George Lusztig,
*Cuspidal local systems and graded Hecke algebras. I*, Inst. Hautes Γtudes Sci. Publ. Math.**67**(1988), 145β202. MR**972345**, DOI 10.1007/BF02699129 - George Lusztig,
*Classification of unipotent representations of simple $p$-adic groups*, Internat. Math. Res. Notices**11**(1995), 517β589. MR**1369407**, DOI 10.1155/S1073792895000353 - George Lusztig,
*Study of perverse sheaves arising from graded Lie algebras*, Adv. Math.**112**(1995), no.Β 2, 147β217. MR**1327095**, DOI 10.1006/aima.1995.1031 - G. Lusztig,
*Classification of unipotent representations of simple $p$-adic groups. II*, Represent. Theory**6**(2002), 243β289. MR**1927955**, DOI 10.1090/S1088-4165-02-00173-5 - George Lusztig and Zhiwei Yun,
*$\mathbf {Z}/m$-graded Lie algebras and perverse sheaves, I*, Represent. Theory**21**(2017), 277β321. MR**3697026**, DOI 10.1090/ert/500 - George Lusztig and Zhiwei Yun,
*$\mathbf {Z}/m$-graded Lie algebras and perverse sheaves, II*, Represent. Theory**21**(2017), 322β353. MR**3698042**, DOI 10.1090/ert/501 - Alexei Oblomkov and Zhiwei Yun,
*Geometric representations of graded and rational Cherednik algebras*, Adv. Math.**292**(2016), 601β706. MR**3464031**, DOI 10.1016/j.aim.2016.01.015 - Robert Steinberg,
*Endomorphisms of linear algebraic groups*, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR**0230728** - Eric Vasserot,
*Induced and simple modules of double affine Hecke algebras*, Duke Math. J.**126**(2005), no.Β 2, 251β323. MR**2115259**, DOI 10.1215/S0012-7094-04-12623-5

## Additional Information

**George Lusztig**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@math.mit.edu
**Zhiwei Yun**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- MR Author ID: 862829
- Email: zyun@mit.edu
- Received by editor(s): April 2, 2017
- Received by editor(s) in revised form: June 4, 2018
- Published electronically: July 19, 2018
- Additional Notes: The first author was partially supported by the NSF grant DMS-1566618.

The second author was supported by the NSF grant DMS-1302071 (with extension as DMS-1736600) and the Packard Foundation. - © Copyright 2018 American Mathematical Society
- Journal: Represent. Theory
**22**(2018), 87-118 - MSC (2010): Primary 20G99, 20C08
- DOI: https://doi.org/10.1090/ert/515
- MathSciNet review: 3829497