Duality for classical $p$-adic groups: The half-integral case
HTML articles powered by AMS MathViewer
- by Chris Jantzen PDF
- Represent. Theory 22 (2018), 160-201 Request permission
Abstract:
Let $G$ be a classical $p$-adic group and let $\pi$ be a smooth irreducible representation of $G$. In this paper, we consider the problem of calculating the dual (in the sense of Aubert and Schneider-Stuhler) $\hat {\pi }$. More precisely, if $\pi$ is specified by its Langlands data, the problem is to determine the Langlands data for $\hat {\pi }$. This problem reduces (based on supercuspidal support) to two main cases: half-integral reducibility and integral reducibility; the latter is addressed here.References
- Dean Alvis, The duality operation in the character ring of a finite Chevalley group, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 907â911. MR 546315, DOI 10.1090/S0273-0979-1979-14690-1
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Anne-Marie Aubert, DualitĂ© dans le groupe de Grothendieck de la catĂ©gorie des reprĂ©sentations lisses de longueur finie dâun groupe rĂ©ductif $p$-adique, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2179â2189 (French, with English summary). MR 1285969, DOI 10.1090/S0002-9947-1995-1285969-0
- Dubravka Ban, Parabolic induction and Jacquet modules of representations of $\textrm {O}(2n,F)$, Glas. Mat. Ser. III 34(54) (1999), no. 2, 147â185. MR 1739616
- Dubravka Ban and Chris Jantzen, Degenerate principal series for even-orthogonal groups, Represent. Theory 7 (2003), 440â480. MR 2017065, DOI 10.1090/S1088-4165-03-00166-3
- Dubravka Ban and Chris Jantzen, Duality and the normalization of standard intertwining operators, Manuscripta Math. 115 (2004), no. 4, 401â415. MR 2103658, DOI 10.1007/s00229-004-0504-7
- Dubravka Ban and Chris Jantzen, Jacquet modules and the Langlands classification, Michigan Math. J. 56 (2008), no. 3, 637â653. MR 2490651, DOI 10.1307/mmj/1231770365
- Dan Barbasch and Allen Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), no. 1, 19â37. MR 1010153, DOI 10.1007/BF01388842
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. Ăcole Norm. Sup. (4) 10 (1977), no. 4, 441â472. MR 579172, DOI 10.24033/asens.1333
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- W. Casselman, Introduction to the theory of admissible representations of $p$-adic reductive groups, preprint (available online at www.math.ubc.ca/people/faculty/cass/research.html as âThe $p$-adic notesâ).
- Charles W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62 (1980), no. 2, 320â332. MR 563231, DOI 10.1016/0021-8693(80)90185-4
- Pierre Deligne and George Lusztig, Duality for representations of a reductive group over a finite field, J. Algebra 74 (1982), no. 1, 284â291. MR 644236, DOI 10.1016/0021-8693(82)90023-0
- Pierre Deligne and George Lusztig, Duality for representations of a reductive group over a finite field. II, J. Algebra 81 (1983), no. 2, 540â545. MR 700298, DOI 10.1016/0021-8693(83)90202-8
- W.-T. Gan and L. LomelĂ, Globalization of supercuspidal representations over function fields and applications, to appear, J. Eur. Math. Soc.
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Ătudes Sci. Publ. Math. 25 (1965), 5â48. MR 185016, DOI 10.1007/BF02684396
- Chris Jantzen, Reducibility of certain representations for symplectic and odd-orthogonal groups, Compositio Math. 104 (1996), no. 1, 55â63. MR 1420710
- Chris Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), no. 6, 1213â1262. MR 1481814, DOI 10.1353/ajm.1997.0039
- Chris Jantzen, Some remarks on degenerate principal series, Pacific J. Math. 186 (1998), no. 1, 67â87. MR 1665057, DOI 10.2140/pjm.1998.186.67
- Chris Jantzen, Duality and supports of induced representations for orthogonal groups, Canad. J. Math. 57 (2005), no. 1, 159â179. MR 2113853, DOI 10.4153/CJM-2005-007-x
- Chris Jantzen, Jacquet modules of $p$-adic general linear groups, Represent. Theory 11 (2007), 45â83. MR 2306606, DOI 10.1090/S1088-4165-07-00316-0
- Chris Jantzen, Discrete series for $p$-adic $\textrm {SO}(2n)$ and restrictions of representations of $\textrm {O}(2n)$, Canad. J. Math. 63 (2011), no. 2, 327â380. MR 2809059, DOI 10.4153/CJM-2011-003-2
- Chris Jantzen, Tempered representations for classical $p$-adic groups, Manuscripta Math. 145 (2014), no. 3-4, 319â387. MR 3268853, DOI 10.1007/s00229-014-0679-5
- Chris Jantzen, Jacquet modules and irrreducibility of induced representations for classical $p$-adic groups, Manuscripta Math. 156 (2018), no. 1-2, 23â55. MR 3783564, DOI 10.1007/s00229-017-0955-2
- Shin-ichi Kato, Duality for representations of a Hecke algebra, Proc. Amer. Math. Soc. 119 (1993), no. 3, 941â946. MR 1215028, DOI 10.1090/S0002-9939-1993-1215028-8
- N. Kawanaka, Fourier transforms of nilpotently supported invariant functions on a simple Lie algebra over a finite field, Invent. Math. 69 (1982), no. 3, 411â435. MR 679766, DOI 10.1007/BF01389363
- Harold Knight and Andrei Zelevinsky, Representations of quivers of type $A$ and the multisegment duality, Adv. Math. 117 (1996), no. 2, 273â293. MR 1371654, DOI 10.1006/aima.1996.0013
- Takuya Konno, A note on the Langlands classification and irreducibility of induced representations of $p$-adic groups, Kyushu J. Math. 57 (2003), no. 2, 383â409. MR 2050093, DOI 10.2206/kyushujm.57.383
- C. MĆglin, Normalisation des opĂ©rateurs dâentrelacement et rĂ©ductibilitĂ© des induites des cuspidales; le cas des groupes classiques $p$-adiques, Ann. of Math., 151(2000), 817-847.
- C. MĆglin, Sur la classification des sĂ©ries discrĂštes des groupes classiques $p$-adiques: paramĂštres de Langlands et exhaustivitĂ©, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 2, 143â200 (French, with English summary). MR 1913095, DOI 10.1007/s100970100033
- C. MĆglin, Sur certains paquets dâArthur et involution dâAubert-Schneider-Stuhler gĂ©nĂ©ralisĂ©e, Represent. Theory 10 (2006), 86â129 (French, with English summary). MR 2209850, DOI 10.1090/S1088-4165-06-00270-6
- Colette MĆglin, Paquets stables des sĂ©ries discrĂštes accessibles par endoscopie tordue; leur paramĂštre de Langlands, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, pp. 295â336 (French, with English summary). MR 3220932, DOI 10.1090/conm/614/12254
- Colette MĆglin and Marko TadiÄ, Construction of discrete series for classical $p$-adic groups, J. Amer. Math. Soc. 15 (2002), no. 3, 715â786. MR 1896238, DOI 10.1090/S0894-0347-02-00389-2
- C. MĆglin and J.-L. Waldspurger, Sur lâinvolution de Zelevinski, J. Reine Angew. Math. 372 (1986), 136â177 (French). MR 863522, DOI 10.1515/crll.1986.372.136
- Goran MuiÄ, The unitary dual of $p$-adic $G_2$, Duke Math. J. 90 (1997), no. 3, 465â493. MR 1480543, DOI 10.1215/S0012-7094-97-09012-8
- Goran MuiÄ, Composition series of generalized principal series; the case of strongly positive discrete series, Israel J. Math. 140 (2004), 157â202. MR 2054843, DOI 10.1007/BF02786631
- Goran MuiÄ, Reducibility of generalized principal series, Canad. J. Math. 57 (2005), no. 3, 616â647. MR 2134404, DOI 10.4153/CJM-2005-025-4
- Goran MuiÄ and Marko TadiÄ, Unramified unitary duals for split classical $p$-adic groups; the topology and isolated representations, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 375â438. MR 2767523
- Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Ătudes Sci. Publ. Math. 85 (1997), 97â191. MR 1471867, DOI 10.1007/BF02699536
- Freydoon Shahidi, A proof of Langlandsâ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273â330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, Twisted endoscopy and reducibility of induced representations for $p$-adic groups, Duke Math. J. 66 (1992), no. 1, 1â41. MR 1159430, DOI 10.1215/S0012-7094-92-06601-4
- Allan J. Silberger, The Langlands quotient theorem for $p$-adic groups, Math. Ann. 236 (1978), no. 2, 95â104. MR 507262, DOI 10.1007/BF01351383
- Allan J. Silberger, Special representations of reductive $p$-adic groups are not integrable, Ann. of Math. (2) 111 (1980), no. 3, 571â587. MR 577138, DOI 10.2307/1971110
- Marko TadiÄ, Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups, J. Algebra 177 (1995), no. 1, 1â33. MR 1356358, DOI 10.1006/jabr.1995.1284
- Marko TadiÄ, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29â91. MR 1658535, DOI 10.1007/BF02764004
- Marko TadiÄ, On classification of some classes of irreducible representations of classical groups, Representations of real and $p$-adic groups, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 2, Singapore Univ. Press, Singapore, 2004, pp. 95â162. MR 2090870, DOI 10.1142/9789812562500_{0}004
- Marko TadiÄ, On invariants of discrete series representations of classical $p$-adic groups, Manuscripta Math. 135 (2011), no. 3-4, 417â435. MR 2813443, DOI 10.1007/s00229-010-0423-8
- Marko TadiÄ, On tempered and square integrable representations of classical $p$-adic groups, Sci. China Math. 56 (2013), no. 11, 2273â2313. MR 3123571, DOI 10.1007/s11425-013-4667-0
- J.-L. Waldspurger, La formule de Plancherel pour les groupes $p$-adiques (dâaprĂšs Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235â333 (French, with French summary). MR 1989693, DOI 10.1017/S1474748003000082
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. Ăcole Norm. Sup. (4) 13 (1980), no. 2, 165â210. MR 584084, DOI 10.24033/asens.1379
- Yuanli Zhang, $L$-packets and reducibilities, J. Reine Angew. Math. 510 (1999), 83â102. MR 1696092, DOI 10.1515/crll.1999.050
Additional Information
- Chris Jantzen
- Affiliation: Department of Mathematics, East Caronlina University, Greenville, North Carolina 27858
- MR Author ID: 316181
- Email: jantzenc@ecu.edu
- Received by editor(s): January 15, 2018
- Received by editor(s) in revised form: July 19, 2018
- Published electronically: October 24, 2018
- Additional Notes: This research was supported in part by NSA grant H98230-13-1-0237.
- © Copyright 2018 American Mathematical Society
- Journal: Represent. Theory 22 (2018), 160-201
- MSC (2010): Primary 22E50
- DOI: https://doi.org/10.1090/ert/519
- MathSciNet review: 3868005