## Representations associated to small nilpotent orbits for complex Spin groups

HTML articles powered by AMS MathViewer

- by Dan Barbasch and Wan-Yu Tsai PDF
- Represent. Theory
**22**(2018), 202-222 Request permission

## Abstract:

This paper provides a comparison between the $K$-structure of unipotent representations and regular sections of bundles on nilpotent orbits for complex groups of type $D$. Precisely, let $G_0 =\operatorname {Spin}(2n,\mathbb {C})$ be the Spin complex group as a real group, and let $K\cong G_0$ be the complexification of the maximal compact subgroup of $G_0$. We compute $K$-spectra of the regular functions on some small nilpotent orbits $\mathcal {O}$ transforming according to characters $\psi$ of $C_{ K}(\mathcal {O})$ trivial on the connected component of the identity $C_{ K}(\mathcal {O})^0$. We then match them with the ${K}$-types of the genuine (i.e., representations which do not factor to $\operatorname {SO}(2n,\mathbb {C})$) unipotent representations attached to $\mathcal {O}$.## References

- Jeffrey Adams, Dan Barbasch, and David A. Vogan Jr.,
*The Langlands classification and irreducible characters for real reductive groups*, Progress in Mathematics, vol. 104, Birkhäuser Boston, Inc., Boston, MA, 1992. MR**1162533**, DOI 10.1007/978-1-4612-0383-4 - Jeffrey Adams, Jing-Song Huang, and David A. Vogan Jr.,
*Functions on the model orbit in $E_8$*, Represent. Theory**2**(1998), 224–263. MR**1628031**, DOI 10.1090/S1088-4165-98-00048-X - Dan Barbasch,
*Unipotent representations and the dual pair correspondence*, Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 47–85. MR**3753908**, DOI 10.1007/978-3-319-59728-7_{3} - Dan Barbasch,
*The unitary dual for complex classical Lie groups*, Invent. Math.**96**(1989), no. 1, 103–176. MR**981739**, DOI 10.1007/BF01393972 - Dan Barbasch and Pavle Pandžić,
*Dirac cohomology and unipotent representations of complex groups*, Noncommutative geometry and global analysis, Contemp. Math., vol. 546, Amer. Math. Soc., Providence, RI, 2011, pp. 1–22. MR**2815128**, DOI 10.1090/conm/546/10782 - Dan Barbasch and Pavle Pandžić,
*Dirac cohomology of unipotent representations of $Sp(2n,\Bbb R)$ and $U(p,q)$*, J. Lie Theory**25**(2015), no. 1, 185–213. MR**3345832** - Alfredo O. Brega,
*On the unitary dual of $\textrm {Spin}(2n,\mathbf C)$*, Trans. Amer. Math. Soc.**351**(1999), no. 1, 403–415. MR**1473432**, DOI 10.1090/S0002-9947-99-02173-X - Dan Barbasch and David A. Vogan Jr.,
*Unipotent representations of complex semisimple groups*, Ann. of Math. (2)**121**(1985), no. 1, 41–110. MR**782556**, DOI 10.2307/1971193 - Dan Barbasch and Wan-Yu Tsai,
*Representations associated to small niltpotent orbits for real spin groups*, J. Lie Theory**28**(2018), no. 4, 987–1042. MR**3831429** - David H. Collingwood and William M. McGovern,
*Nilpotent orbits in semisimple Lie algebras*, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR**1251060** - James E. Humphreys,
*Representations of semisimple Lie algebras in the BGG category $\scr {O}$*, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR**2428237**, DOI 10.1090/gsm/094 - Donald R. King,
*Classification of spherical nilpotent orbits in complex symmetric space*, J. Lie Theory**14**(2004), no. 2, 339–370. MR**2066860** - Hanspeter Kraft and Claudio Procesi,
*On the geometry of conjugacy classes in classical groups*, Comment. Math. Helv.**57**(1982), no. 4, 539–602. MR**694606**, DOI 10.1007/BF02565876 - Anthony W. Knapp and David A. Vogan Jr.,
*Cohomological induction and unitary representations*, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR**1330919**, DOI 10.1515/9781400883936 - William M. McGovern,
*Rings of regular functions on nilpotent orbits. II. Model algebras and orbits*, Comm. Algebra**22**(1994), no. 3, 765–772. MR**1261003**, DOI 10.1080/00927879408824874 - Dmitrii I. Panyushev,
*Complexity and nilpotent orbits*, Manuscripta Math.**83**(1994), no. 3-4, 223–237. MR**1277527**, DOI 10.1007/BF02567611 - David A. Vogan Jr.,
*Representations of real reductive Lie groups*, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR**632407** - David A. Vogan Jr.,
*The method of coadjoint orbits for real reductive groups*, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238. MR**1737729**, DOI 10.1090/pcms/008/05 - David A. Vogan Jr.,
*Associated varieties and unipotent representations*, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR**1168491** - Garth Warner,
*Harmonic analysis on semi-simple Lie groups. I*, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR**0498999**

## Additional Information

**Dan Barbasch**- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14850
- MR Author ID: 30950
- Email: barbasch@math.cornell.edu
**Wan-Yu Tsai**- Affiliation: Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Address at time of publication: Department of Mathematics and Statistics, University of Ottawa, Ontario, Canada
- MR Author ID: 821037
- Email: wtsai@uottawa.ca, wanyupattsai@gmail.com
- Received by editor(s): September 5, 2017
- Received by editor(s) in revised form: April 2, 2018
- Published electronically: October 25, 2018
- Additional Notes: The first author was supported in part by NSA Grant H98230-16-1-0006.
- © Copyright 2018 American Mathematical Society
- Journal: Represent. Theory
**22**(2018), 202-222 - MSC (2010): Primary 22E46, 22E47
- DOI: https://doi.org/10.1090/ert/517
- MathSciNet review: 3868568