Representations associated to small nilpotent orbits for complex Spin groups
HTML articles powered by AMS MathViewer
- by Dan Barbasch and Wan-Yu Tsai
- Represent. Theory 22 (2018), 202-222
- DOI: https://doi.org/10.1090/ert/517
- Published electronically: October 25, 2018
- PDF | Request permission
Abstract:
This paper provides a comparison between the $K$-structure of unipotent representations and regular sections of bundles on nilpotent orbits for complex groups of type $D$. Precisely, let $G_0 =\operatorname {Spin}(2n,\mathbb {C})$ be the Spin complex group as a real group, and let $K\cong G_0$ be the complexification of the maximal compact subgroup of $G_0$. We compute $K$-spectra of the regular functions on some small nilpotent orbits $\mathcal {O}$ transforming according to characters $\psi$ of $C_{ K}(\mathcal {O})$ trivial on the connected component of the identity $C_{ K}(\mathcal {O})^0$. We then match them with the ${K}$-types of the genuine (i.e., representations which do not factor to $\operatorname {SO}(2n,\mathbb {C})$) unipotent representations attached to $\mathcal {O}$.References
- Jeffrey Adams, Dan Barbasch, and David A. Vogan Jr., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, vol. 104, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1162533, DOI 10.1007/978-1-4612-0383-4
- Jeffrey Adams, Jing-Song Huang, and David A. Vogan Jr., Functions on the model orbit in $E_8$, Represent. Theory 2 (1998), 224–263. MR 1628031, DOI 10.1090/S1088-4165-98-00048-X
- Dan Barbasch, Unipotent representations and the dual pair correspondence, Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 47–85. MR 3753908, DOI 10.1007/978-3-319-59728-7_{3}
- Dan Barbasch, The unitary dual for complex classical Lie groups, Invent. Math. 96 (1989), no. 1, 103–176. MR 981739, DOI 10.1007/BF01393972
- Dan Barbasch and Pavle Pandžić, Dirac cohomology and unipotent representations of complex groups, Noncommutative geometry and global analysis, Contemp. Math., vol. 546, Amer. Math. Soc., Providence, RI, 2011, pp. 1–22. MR 2815128, DOI 10.1090/conm/546/10782
- Dan Barbasch and Pavle Pandžić, Dirac cohomology of unipotent representations of $Sp(2n,\Bbb R)$ and $U(p,q)$, J. Lie Theory 25 (2015), no. 1, 185–213. MR 3345832
- Alfredo O. Brega, On the unitary dual of $\textrm {Spin}(2n,\mathbf C)$, Trans. Amer. Math. Soc. 351 (1999), no. 1, 403–415. MR 1473432, DOI 10.1090/S0002-9947-99-02173-X
- Dan Barbasch and David A. Vogan Jr., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no. 1, 41–110. MR 782556, DOI 10.2307/1971193
- Dan Barbasch and Wan-Yu Tsai, Representations associated to small niltpotent orbits for real spin groups, J. Lie Theory 28 (2018), no. 4, 987–1042. MR 3831429
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- Donald R. King, Classification of spherical nilpotent orbits in complex symmetric space, J. Lie Theory 14 (2004), no. 2, 339–370. MR 2066860
- Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, DOI 10.1007/BF02565876
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- William M. McGovern, Rings of regular functions on nilpotent orbits. II. Model algebras and orbits, Comm. Algebra 22 (1994), no. 3, 765–772. MR 1261003, DOI 10.1080/00927879408824874
- Dmitrii I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), no. 3-4, 223–237. MR 1277527, DOI 10.1007/BF02567611
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
- David A. Vogan Jr., The method of coadjoint orbits for real reductive groups, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238. MR 1737729, DOI 10.1090/pcms/008/05
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR 1168491
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
Bibliographic Information
- Dan Barbasch
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14850
- MR Author ID: 30950
- Email: barbasch@math.cornell.edu
- Wan-Yu Tsai
- Affiliation: Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Address at time of publication: Department of Mathematics and Statistics, University of Ottawa, Ontario, Canada
- MR Author ID: 821037
- Email: wtsai@uottawa.ca, wanyupattsai@gmail.com
- Received by editor(s): September 5, 2017
- Received by editor(s) in revised form: April 2, 2018
- Published electronically: October 25, 2018
- Additional Notes: The first author was supported in part by NSA Grant H98230-16-1-0006.
- © Copyright 2018 American Mathematical Society
- Journal: Represent. Theory 22 (2018), 202-222
- MSC (2010): Primary 22E46, 22E47
- DOI: https://doi.org/10.1090/ert/517
- MathSciNet review: 3868568