Finite-dimensional representations of minimal nilpotent W-algebras and zigzag algebras
HTML articles powered by AMS MathViewer
- by Alexey Petukhov
- Represent. Theory 22 (2018), 223-245
- DOI: https://doi.org/10.1090/ert/516
- Published electronically: November 13, 2018
- PDF | Request permission
Abstract:
Let $\frak g$ be a simple finite-dimensional Lie algebra over an algebraically closed field $\mathbb F$ of characteristic 0. We denote by $\mathrm {U}(\frak g)$ the universal enveloping algebra of $\frak g$. To any nilpotent element $e\in \frak g$ one can attach an associative (and noncommutative as a general rule) algebra $\mathrm {U}(\frak g, e)$ which is in a proper sense a “tensor factor” of $\mathrm {U}(\frak g)$. In this article we consider the case in which $e$ belongs to the minimal nonzero nilpotent orbit of $\frak g$. Under these assumptions $\mathrm {U}(\frak g, e)$ was described explicitly in terms of generators and relations. One can expect that the representation theory of $\mathrm {U}(\frak g, e)$ would be very similar to the representation theory of $\mathrm {U}(\frak g)$. For example one can guess that the category of finite-dimensional $\mathrm {U}(\frak g, e)$-modules is semisimple.
The goal of this article is to show that this is the case if $\frak g$ is not simply-laced. We also show that, if $\frak g$ is simply-laced and is not of type $A_n$, then the regular block of finite-dimensional $\operatorname {U}(\frak g, e)$-modules is equivalent to the category of finite-dimensional modules of a zigzag algebra.
References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), no. 2, 153–199. MR 656661, DOI 10.1007/BF01457308
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), no. 2, 350–382. MR 691809, DOI 10.1016/0021-8693(83)90006-6
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- A. Borel and J. De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200–221 (French). MR 32659, DOI 10.1007/BF02565599
- W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. III. Characteristic varieties of Harish-Chandra modules and of primitive ideals, Invent. Math. 80 (1985), no. 1, 1–68. MR 784528, DOI 10.1007/BF01388547
- Walter Borho and Jens Carsten Jantzen, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math. 39 (1977), no. 1, 1–53 (German, with English summary). MR 453826, DOI 10.1007/BF01695950
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Jonathan Brown, Representation theory of rectangular finite $W$-algebras, J. Algebra 340 (2011), 114–150. MR 2813566, DOI 10.1016/j.jalgebra.2011.05.014
- Jonathan S. Brown and Simon M. Goodwin, Finite dimensional irreducible representations of finite $W$-algebras associated to even multiplicity nilpotent orbits in classical Lie algebras, Math. Z. 273 (2013), no. 1-2, 123–160. MR 3010154, DOI 10.1007/s00209-012-0998-8
- Jonathan Brundan and Alexander Kleshchev, Schur-Weyl duality for higher levels, Selecta Math. (N.S.) 14 (2008), no. 1, 1–57. MR 2480709, DOI 10.1007/s00029-008-0059-7
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Christopher Dodd, Injectivity of the cycle map for finite-dimensional $W$-algebras, Int. Math. Res. Not. IMRN 19 (2014), 5398–5436. MR 3267375, DOI 10.1093/imrn/rnt106
- J. Matthew Douglass, Cells and the reflection representation of Weyl groups and Hecke algebras, Trans. Amer. Math. Soc. 318 (1990), no. 1, 373–399. MR 1035211, DOI 10.1090/S0002-9947-1990-1035211-6
- Dimitar Grantcharov and Vera Serganova, Cuspidal representations of ${\mathfrak {sl}}(n+1)$, Adv. Math. 224 (2010), no. 4, 1517–1547. MR 2646303, DOI 10.1016/j.aim.2009.12.024
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
- Ruth Stella Huerfano and Mikhail Khovanov, A category for the adjoint representation, J. Algebra 246 (2001), no. 2, 514–542. MR 1872113, DOI 10.1006/jabr.2001.8962
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- A. W. Knapp and Gregg J. Zuckerman, Classification of irreducible tempered representations of semisimple groups. II, Ann. of Math. (2) 116 (1982), no. 3, 457–501. MR 678478, DOI 10.2307/2007019
- Anthony Joseph, On the associated variety of a primitive ideal, J. Algebra 93 (1985), no. 2, 509–523. MR 786766, DOI 10.1016/0021-8693(85)90172-3
- Anthony Joseph, Orbital varietes of the minimal orbit, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 1, 17–45 (English, with English and French summaries). MR 1604290, DOI 10.1016/S0012-9593(98)80017-7
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Ivan Losev and Victor Ostrik, Classification of finite-dimensional irreducible modules over $W$-algebras, Compos. Math. 150 (2014), no. 6, 1024–1076. MR 3223881, DOI 10.1112/S0010437X13007604
- Ivan Losev, Finite-dimensional representations of $W$-algebras, Duke Math. J. 159 (2011), no. 1, 99–143. MR 2817650, DOI 10.1215/00127094-1384800
- Ivan Losev, Quantized symplectic actions and $W$-algebras, J. Amer. Math. Soc. 23 (2010), no. 1, 35–59. MR 2552248, DOI 10.1090/S0894-0347-09-00648-1
- Thomas Emile Lynch, GENERALIZED WHITTAKER VECTORS AND REPRESENTATION THEORY, ProQuest LLC, Ann Arbor, MI, 1979. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2940885
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Alexey Petukhov, On the Gelfand-Kirillov conjecture for the W-algebras attached to the minimal nilpotent orbits, J. Algebra 470 (2017), 289–299. MR 3565435, DOI 10.1016/j.jalgebra.2016.08.021
- Alexander Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), no. 1, 1–55. With an appendix by Serge Skryabin. MR 1929302, DOI 10.1006/aima.2001.2063
- Alexander Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 3, 487–543. MR 2314105, DOI 10.4171/JEMS/86
- Alexander Premet and Lewis Topley, Derived subalgebras of centralisers and finite $W$-algebras, Compos. Math. 150 (2014), no. 9, 1485–1548. MR 3260140, DOI 10.1112/S0010437X13007823
- David A. Vogan Jr., A generalized $\tau$-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann. 242 (1979), no. 3, 209–224. MR 545215, DOI 10.1007/BF01420727
Bibliographic Information
- Alexey Petukhov
- Affiliation: The University of Manchester, Oxford Road M13 9PL, Manchester, United Kingdom; and Institute for Information Transmission Problems, Bolshoy Karetniy 19-1, Moscow 127994, Russia
- MR Author ID: 828039
- Email: alex-{}-2@yandex.ru
- Received by editor(s): June 3, 2017
- Received by editor(s) in revised form: July 3, 2018
- Published electronically: November 13, 2018
- Additional Notes: The main result of the research presented in Sections 7, 8 was carried out at the IITP at the expense of Russian Science Foundation (project No. 14-50-00150). Other sections of this work were carried out as a part of a project on W-algebras supported by Leverhulme Trust Grant RPG-2013-293.
- © Copyright 2018 American Mathematical Society
- Journal: Represent. Theory 22 (2018), 223-245
- MSC (2010): Primary 22E47, 16D50, 16D90
- DOI: https://doi.org/10.1090/ert/516
- MathSciNet review: 3875450