Quiver varieties and symmetric pairs
HTML articles powered by AMS MathViewer
- by Yiqiang Li
- Represent. Theory 23 (2019), 1-56
- DOI: https://doi.org/10.1090/ert/522
- Published electronically: January 17, 2019
- PDF | Request permission
Abstract:
We study fixed-point loci of Nakajima varieties under symplectomorphisms and their antisymplectic cousins, which are compositions of a diagram isomorphism, a reflection functor, and a transpose defined by certain bilinear forms. These subvarieties provide a natural home for geometric representation theory of symmetric pairs. In particular, the cohomology of a Steinberg-type variety of the symplectic fixed-point subvarieties is conjecturally related to the universal enveloping algebra of the subalgebra in a symmetric pair. The latter symplectic subvarieties are further used to geometrically construct an action of a twisted Yangian on a torus equivariant cohomology of Nakajima varieties. In the type $A$ case, these subvarieties provide a quiver model for partial Springer resolutions of nilpotent Slodowy slices of classical groups and associated symmetric spaces, which leads to a rectangular symmetry and a refinement of Kraft–Procesi row/column removal reductions.References
- M. Balagovic and S. Kolb, Universal K-matrix for quantum symmetric pairs, Journal für die reine und angewandte Mathematik (2016).
- Huanchen Bao, Peng Shan, Weiqiang Wang, and Ben Webster, Categorification of quantum symmetric pairs I, Quantum Topol. 9 (2018), no. 4, 643–714. MR 3874000, DOI 10.4171/QT/117
- Huanchen Bao and Weiqiang Wang, A new approach to Kazhdan-Lusztig theory of type $B$ via quantum symmetric pairs, Astérisque 402 (2018), vii+134 (English, with English and French summaries). MR 3864017
- Huanchen Bao and Weiqiang Wang, Canonical bases arising from quantum symmetric pairs, Invent. Math. 213 (2018), no. 3, 1099–1177. MR 3842062, DOI 10.1007/s00222-018-0801-5
- Huanchen Bao, Jonathan Kujawa, Yiqiang Li, and Weiqiang Wang, Geometric Schur duality of classical type, Transform. Groups 23 (2018), no. 2, 329–389. MR 3805209, DOI 10.1007/s00031-017-9447-4
- Dan Barbasch and Mark R. Sepanski, Closure ordering and the Kostant-Sekiguchi correspondence, Proc. Amer. Math. Soc. 126 (1998), no. 1, 311–317. MR 1422847, DOI 10.1090/S0002-9939-98-04090-8
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- A. A. Beilinson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of $\textrm {GL}_n$, Duke Math. J. 61 (1990), no. 2, 655–677. MR 1074310, DOI 10.1215/S0012-7094-90-06124-1
- I. N. Bernšteĭn, I. M. Gel′fand, and V. A. Ponomarev, Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19–33 (Russian). MR 0393065
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209–216. MR 1996415, DOI 10.1007/s00031-003-0606-4
- Alexander Braverman and Dennis Gaitsgory, On Ginzburg’s Lagrangian construction of representations of $\textrm {GL}(n)$, Math. Res. Lett. 6 (1999), no. 2, 195–201. MR 1689209, DOI 10.4310/MRL.1999.v6.n2.a7
- T.-H. Chen and D. Nadler, Kostant-Sekiguchi homeomorphisms, arXiv:1805.06564.
- I. V. Cherednik, Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz. 61 (1984), no. 1, 35–44 (Russian, with English summary). MR 774205
- Jaeyoo Choy, Moduli spaces of framed symplectic and orthogonal bundles on $\Bbb {P}^2$ and the $K$-theoretic Nekrasov partition functions, J. Geom. Phys. 106 (2016), 284–304. MR 3508922, DOI 10.1016/j.geomphys.2016.04.011
- Emmanuel Briand, Rosa Orellana, and Mercedes Rosas, Rectangular symmetries for coefficients of symmetric functions, Electron. J. Combin. 22 (2015), no. 3, Paper 3.15, 18. MR 3386516, DOI 10.37236/4808
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197, DOI 10.1090/gsm/011
- V. Drinfeld and D. Gaitsgory, On a theorem of Braden, Transform. Groups 19 (2014), no. 2, 313–358. MR 3200429, DOI 10.1007/s00031-014-9267-8
- Bas Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), no. 3, 291–306. MR 1149171
- Michael Ehrig and Catharina Stroppel, 2-row Springer fibres and Khovanov diagram algebras for type D, Canad. J. Math. 68 (2016), no. 6, 1285–1333. MR 3563723, DOI 10.4153/CJM-2015-051-4
- Michael Ehrig and Catharina Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math. 331 (2018), 58–142. MR 3804673, DOI 10.1016/j.aim.2018.01.013
- Naoya Enomoto, A quiver construction of symmetric crystals, Int. Math. Res. Not. IMRN 12 (2009), 2200–2247. MR 2511909, DOI 10.1093/imrn/rnp014
- N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178–206 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 193–225. MR 1015339
- Baohua Fu, Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003), no. 1, 167–186. MR 1943745, DOI 10.1007/s00222-002-0260-9
- Victor Ginzburg, Lagrangian construction of the enveloping algebra $U(\textrm {sl}_n)$, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 12, 907–912 (English, with French summary). MR 1111326
- Nicolas Guay, Vidas Regelskis, and Curtis Wendlandt, Representations of twisted Yangians of types B, C, D: I, Selecta Math. (N.S.) 23 (2017), no. 3, 2071–2156. MR 3663603, DOI 10.1007/s00029-017-0306-x
- N. Guay, V. Regelskis, and C. Wendlandt, Representations of twisted Yangians of types B, C, D: II, arXiv:1708.00968.
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Anthony Henderson and Anthony Licata, Diagram automorphisms of quiver varieties, Adv. Math. 267 (2014), 225–276. MR 3269179, DOI 10.1016/j.aim.2014.08.007
- Anthony Henderson, Singularities of nilpotent orbit closures, Rev. Roumaine Math. Pures Appl. 60 (2015), no. 4, 441–469. MR 3436211
- Birger Iversen, A fixed point formula for action of tori on algebraic varieties, Invent. Math. 16 (1972), 229–236. MR 299608, DOI 10.1007/BF01425495
- Stefan Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395–469. MR 3269184, DOI 10.1016/j.aim.2014.08.010
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- Hanspeter Kraft and Claudio Procesi, Minimal singularities in $\textrm {GL}_{n}$, Invent. Math. 62 (1981), no. 3, 503–515. MR 604841, DOI 10.1007/BF01394257
- Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, DOI 10.1007/BF02565876
- P. B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Differential Geom. 32 (1990), no. 2, 473–490. MR 1072915, DOI 10.4310/jdg/1214445316
- Peter B. Kronheimer and Hiraku Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), no. 2, 263–307. MR 1075769, DOI 10.1007/BF01444534
- Gail Letzter, Harish-Chandra modules for quantum symmetric pairs, Represent. Theory 4 (2000), 64–96. MR 1742961, DOI 10.1090/S1088-4165-00-00087-X
- Yiqiang Li and Weiqiang Wang, Positivity vs negativity of canonical bases, Bull. Inst. Math. Acad. Sin. (N.S.) 13 (2018), no. 2, 143–198. MR 3792711
- G. Lusztig, On quiver varieties, Adv. Math. 136 (1998), no. 1, 141–182. MR 1623674, DOI 10.1006/aima.1998.1729
- George Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 461–489 (English, with English and French summaries). MR 1775358, DOI 10.5802/aif.1762
- G. Lusztig, Remarks on quiver varieties, Duke Math. J. 105 (2000), no. 2, 239–265. MR 1793612, DOI 10.1215/S0012-7094-00-10523-6
- Andrea Maffei, A remark on quiver varieties and Weyl groups, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), no. 3, 649–686. MR 1990675
- Andrea Maffei, Quiver varieties of type A, Comment. Math. Helv. 80 (2005), no. 1, 1–27. MR 2130242, DOI 10.4171/CMH/1
- D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287.
- Alexander Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, vol. 143, American Mathematical Society, Providence, RI, 2007. MR 2355506, DOI 10.1090/surv/143
- Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416. MR 1302318, DOI 10.1215/S0012-7094-94-07613-8
- Hiraku Nakajima, Varieties associated with quivers, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 139–157. MR 1388562
- Hiraku Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no. 3, 515–560. MR 1604167, DOI 10.1215/S0012-7094-98-09120-7
- Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238. MR 1808477, DOI 10.1090/S0894-0347-00-00353-2
- Hiraku Nakajima, Quiver varieties and tensor products, Invent. Math. 146 (2001), no. 2, 399–449. MR 1865400, DOI 10.1007/PL00005810
- Hiraku Nakajima, Reflection functors for quiver varieties and Weyl group actions, Math. Ann. 327 (2003), no. 4, 671–721. MR 2023313, DOI 10.1007/s00208-003-0467-0
- Hiraku Nakajima, Quiver varieties and tensor products, II, Symmetries, integrable systems and representations, Springer Proc. Math. Stat., vol. 40, Springer, Heidelberg, 2013, pp. 403–428. MR 3077693, DOI 10.1007/978-1-4471-4863-0_{1}6
- Hiraku Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal N=4$ gauge theories, I, Adv. Theor. Math. Phys. 20 (2016), no. 3, 595–669. MR 3565863, DOI 10.4310/ATMP.2016.v20.n3.a4
- Hiraku Nakajima, Lectures on perverse sheaves on instanton moduli spaces, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 381–436. MR 3752464
- Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416. MR 1302318, DOI 10.1215/S0012-7094-94-07613-8
- Takuya Ohta, The singularities of the closures of nilpotent orbits in certain symmetric pairs, Tohoku Math. J. (2) 38 (1986), no. 3, 441–468. MR 854462, DOI 10.2748/tmj/1178228456
- Takuya Ohta, The closures of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J. (2) 43 (1991), no. 2, 161–211. MR 1104427, DOI 10.2748/tmj/1178227492
- A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110, DOI 10.1007/978-3-642-74334-4
- Jir\B{o} Sekiguchi, The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. Res. Inst. Math. Sci. 20 (1984), no. 1, 155–212. MR 736100, DOI 10.2977/prims/1195181836
- Jir\B{o} Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), no. 1, 127–138. MR 867991, DOI 10.2969/jmsj/03910127
- Peter Slodowy, Four lectures on simple groups and singularities, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, vol. 11, Rijksuniversiteit Utrecht, Mathematical Institute, Utrecht, 1980. MR 563725, DOI 10.1007/BFb0090294
- Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980. MR 584445, DOI 10.1007/BFb0090294
- M. Varagnolo and E. Vasserot, Standard modules of quantum affine algebras, Duke Math. J. 111 (2002), no. 3, 509–533. MR 1885830, DOI 10.1215/S0012-7094-02-11135-1
- Michela Varagnolo and Eric Vasserot, Canonical bases and quiver varieties, Represent. Theory 7 (2003), 227–258. MR 1990661, DOI 10.1090/S1088-4165-03-00154-7
- Michèle Vergne, Instantons et correspondance de Kostant-Sekiguchi, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 8, 901–906 (French, with English and French summaries). MR 1328708
- David A. Vogan Jr., The orbit method and primitive ideals for semisimple Lie algebras, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 281–316. MR 832204, DOI 10.1007/BF01394418
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR 1168491
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
- Arik Wilbert, Topology of two-row Springer fibers for the even orthogonal and symplectic group, Trans. Amer. Math. Soc. 370 (2018), no. 4, 2707–2737. MR 3748583, DOI 10.1090/tran/7194
Bibliographic Information
- Yiqiang Li
- Affiliation: Department of Mathematics, University at Buffalo, the State University of New York, Buffalo, New York 14260
- MR Author ID: 828279
- ORCID: 0000-0003-4608-3465
- Email: yiqiang@buffalo.edu
- Received by editor(s): January 15, 2018
- Received by editor(s) in revised form: October 15, 2018, and November 2, 2018
- Published electronically: January 17, 2019
- Additional Notes: This work was partially supported by the National Science Foundation under the grant DMS 1801915.
- © Copyright 2019 American Mathematical Society
- Journal: Represent. Theory 23 (2019), 1-56
- MSC (2010): Primary 16S30, 14J50, 14L35, 51N30, 53D05
- DOI: https://doi.org/10.1090/ert/522
- MathSciNet review: 3900699