Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Resolving irreducible $\mathbb {C}S_n$-modules by modules restricted from $GL_n(\mathbb {C})$
HTML articles powered by AMS MathViewer

by Christopher Ryba PDF
Represent. Theory 24 (2020), 229-234 Request permission


We construct a resolution of irreducible complex representations of the symmetric group $S_n$ by restrictions of representations of $GL_n(\mathbb {C})$ (where $S_n$ is the subgroup of permutation matrices). This categorifies a recent result of Assaf and Speyer. Our construction also gives projective resolutions of simple $\mathcal {F}$-modules (here $\mathcal {F}$ is the category of finite sets).
  • Sami H. Assaf and David E. Speyer, Specht modules decompose as alternating sums of restrictions of Schur modules, Proc. Amer. Math. Soc. 148 (2020), no.Β 3, 1015–1029. MR 4055931, DOI 10.1090/proc/14815
  • David A. Gay, Characters of the Weyl group of $SU(n)$ on zero weight spaces and centralizers of permutation representations, Rocky Mountain J. Math. 6 (1976), no.Β 3, 449–455. MR 414794, DOI 10.1216/RMJ-1976-6-3-449
  • D. E. Littlewood, Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Canadian J. Math. 10 (1958), 17–32. MR 95209, DOI 10.4153/CJM-1958-002-7
  • I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
  • Christophe Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1231799
  • Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
  • Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
  • John D. Wiltshire-Gordon, Uniformly presented vector spaces, arXiv preprint arXiv:1406.0786, 2014.
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 05E10, 20C30
  • Retrieve articles in all journals with MSC (2010): 05E10, 20C30
Additional Information
  • Christopher Ryba
  • Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
  • MR Author ID: 1317998
  • ORCID: 0000-0002-8114-8263
  • Email:
  • Received by editor(s): January 4, 2019
  • Received by editor(s) in revised form: September 24, 2019
  • Published electronically: June 25, 2020
  • © Copyright 2020 American Mathematical Society
  • Journal: Represent. Theory 24 (2020), 229-234
  • MSC (2010): Primary 05E10, 20C30
  • DOI:
  • MathSciNet review: 4127906