Semisimple characters for inner forms II: Quaternionic forms of $p$-adic classical groups ($p$ odd)
HTML articles powered by AMS MathViewer
- by Daniel Skodlerack PDF
- Represent. Theory 24 (2020), 323-359 Request permission
Abstract:
In this article we consider the set $G$ of rational points of a quaternionic form of a symplectic or an orthogonal group defined over a non-Archimedean local field of odd residue characteristic. We construct all full self-dual semisimple characters for $G$ and we classify their intertwining classes using endo-parameters. We compute the set of intertwiners between self-dual semisimple characters, and prove an intertwining and conjugacy theorem. Finally we count all $G$-intertwining classes of full self-dual semisimple characters which lift to the same $\tilde {G}$-intertwining class of a full semisimple character for the ambient general linear group $\tilde {G}$ for $G$.References
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1
- Laure Blasco and Corinne Blondel, Caractères semi-simples de $G_2(F)$, $F$ corps local non archimédien, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 6, 985–1025 (2013) (French, with English and French summaries). MR 3075110, DOI 10.24033/asens.2182
- Corinne Blondel, Guy Henniart, and Shaun Stevens, Jordan blocks of cuspidal representations of symplectic groups, Algebra Number Theory 12 (2018), no. 10, 2327–2386. MR 3911133, DOI 10.2140/ant.2018.12.2327
- P. Broussous and B. Lemaire, Building of $\textrm {GL}(m,D)$ and centralizers, Transform. Groups 7 (2002), no. 1, 15–50. MR 1888474, DOI 10.1007/s00031-002-0002-5
- P. Broussous, V. Sécherre, and S. Stevens, Smooth representations of $\textrm {GL}_m(D)$ V: Endo-classes, Doc. Math. 17 (2012), 23–77. MR 2889743
- P. Broussous and S. Stevens, Buildings of classical groups and centralizers of Lie algebra elements, J. Lie Theory 19 (2009), no. 1, 55–78. MR 2531872
- F. Bruhat and J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France 115 (1987), no. 2, 141–195 (French, with English summary). MR 919421, DOI 10.24033/bsmf.2073
- Colin J. Bushnell and Guy Henniart, Local tame lifting for $\textrm {GL}(N)$. I. Simple characters, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 105–233. MR 1423022, DOI 10.1007/BF02698646
- Colin J. Bushnell and Guy Henniart, Higher ramification and the local Langlands correspondence, Ann. of Math. (2) 185 (2017), no. 3, 919–955. MR 3664814, DOI 10.4007/annals.2017.185.3.5
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- Colin J. Bushnell and Philip C. Kutzko, Semisimple types in $\textrm {GL}_n$, Compositio Math. 119 (1999), no. 1, 53–97. MR 1711578, DOI 10.1023/A:1001773929735
- Jean-Francois Dat, Finitude pour les représentations lisses de groupes $p$-adiques, J. Inst. Math. Jussieu 8 (2009), no. 2, 261–333 (French, with English and French summaries). MR 2485794, DOI 10.1017/S1474748008000054
- A. Dotto, The inertial Jacquet-Langlands correspondence, arXiv:1707.00635, 2017.
- George Glauberman, Correspondences of characters for relatively prime operator groups, Canadian J. Math. 20 (1968), 1465–1488. MR 232866, DOI 10.4153/CJM-1968-148-x
- Tasho Kaletha, Regular supercuspidal representations, J. Amer. Math. Soc. 32 (2019), no. 4, 1071–1170. MR 4013740, DOI 10.1090/jams/925
- Ju-Lee Kim, Supercuspidal representations: an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 273–320. MR 2276772, DOI 10.1090/S0894-0347-06-00544-3
- R. Kurinczuk, D. Skodlerack, and S. Stevens, Endo-parameters for $p$-adic classical groups, arXiv:1611.02667, pages 1–78, Sept 2019.
- R. Kurinczuk and S. Stevens, Cuspidal $l$-modular representations of $p$-adic classical groups, J. Reine Angew. Math. 2020 (2020), no. 764, 23–69, DOI 10.1515/CRELLE-2019-0009.
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- Lawrence Morris, Level zero $\bf G$-types, Compositio Math. 118 (1999), no. 2, 135–157. MR 1713308, DOI 10.1023/A:1001019027614
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- Vincent Sécherre, Représentations lisses de $\textrm {GL}(m,D)$. I. Caractères simples, Bull. Soc. Math. France 132 (2004), no. 3, 327–396 (French, with English and French summaries). MR 2081220, DOI 10.24033/bsmf.2468
- Vincent Sécherre and Shaun Stevens, Smooth representations of $GL_m(D)$ VI: semisimple types, Int. Math. Res. Not. IMRN 13 (2012), 2994–3039. MR 2946230, DOI 10.1093/imrn/rnr122
- Vincent Sécherre and Shaun Stevens, Towards an explicit local Jacquet-Langlands correspondence beyond the cuspidal case, Compos. Math. 155 (2019), no. 10, 1853–1887. MR 4000000, DOI 10.1112/S0010437X19007486
- D. Skodlerack, Field embeddings which are conjugate under a $p$-adic classical group, Manuscripta math., 144, 277–301, 2014.
- D. Skodlerack, Semisimple characters for inner forms I: $\mathrm {GL}_m(D)$, arXiv:1703.04904, pages 1–37, Feb 2017.
- Daniel Skodlerack and Shaun Stevens, Intertwining semisimple characters for $p$-adic classical groups, Nagoya Math. J. 238 (2020), 137–205. MR 4092850, DOI 10.1017/nmj.2018.23
- Shaun Stevens, Double coset decompositions and intertwining, Manuscripta Math. 106 (2001), no. 3, 349–364. MR 1869226, DOI 10.1007/PL00005887
- Shaun Stevens, Intertwining and supercuspidal types for $p$-adic classical groups, Proc. London Math. Soc. (3) 83 (2001), no. 1, 120–140. MR 1829562, DOI 10.1112/plms/83.1.120
- Shaun Stevens, Semisimple characters for $p$-adic classical groups, Duke Math. J. 127 (2005), no. 1, 123–173. MR 2126498, DOI 10.1215/S0012-7094-04-12714-9
- Shaun Stevens, The supercuspidal representations of $p$-adic classical groups, Invent. Math. 172 (2008), no. 2, 289–352. MR 2390287, DOI 10.1007/s00222-007-0099-1
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622. MR 1824988, DOI 10.1090/S0894-0347-01-00363-0
Additional Information
- Daniel Skodlerack
- Affiliation: Institute of Mathematical Sciences, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, People’s Republic of China, 201210
- MR Author ID: 1033529
- Email: dskodlerack@shanghaitech.edu.cn
- Received by editor(s): August 16, 2018
- Received by editor(s) in revised form: January 26, 2020
- Published electronically: July 29, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory 24 (2020), 323-359
- MSC (2010): Primary 11E57, 11E95, 20G05, 22E50
- DOI: https://doi.org/10.1090/ert/544
- MathSciNet review: 4128451