## Degenerate principal series for classical and odd GSpin groups in the general case

HTML articles powered by AMS MathViewer

- by Yeansu Kim, Baiying Liu and Ivan Matić PDF
- Represent. Theory
**24**(2020), 403-434 Request permission

## Abstract:

Let $G_n$ denote either the group $SO(2n+1, F)$, $Sp(2n, F)$, or $G{\mathrm {Spin}}(2n+1, F)$ over a non-archimedean local field of characteristic different from two. We determine all composition factors of degenerate principal series of $G_n$, using methods based on the Aubert involution and known results on irreducible subquotients of the generalized principal series of a particular type.## References

- James Arthur,
*The endoscopic classification of representations*, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR**3135650**, DOI 10.1090/coll/061 - Mahdi Asgari,
*Local $L$-functions for split spinor groups*, Canad. J. Math.**54**(2002), no. 4, 673–693. MR**1913914**, DOI 10.4153/CJM-2002-025-8 - Anne-Marie Aubert,
*Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif $p$-adique*, Trans. Amer. Math. Soc.**347**(1995), no. 6, 2179–2189 (French, with English summary). MR**1285969**, DOI 10.1090/S0002-9947-1995-1285969-0 - Anne-Marie Aubert,
*Erratum: “Duality in the Grothendieck group of the category of finite-length smooth representations of a $p$-adic reductive group” [Trans. Amer. Math. Soc. 347 (1995), no. 6, 2179–2189; MR1285969 (95i:22025)]*, Trans. Amer. Math. Soc.**348**(1996), no. 11, 4687–4690 (French). MR**1390967**, DOI 10.1090/S0002-9947-96-01776-X - Dubravka Ban and Chris Jantzen,
*Degenerate principal series for even-orthogonal groups*, Represent. Theory**7**(2003), 440–480. MR**2017065**, DOI 10.1090/S1088-4165-03-00166-3 - Wee Teck Gan and Luis Lomelí,
*Globalization of supercuspidal representations over function fields and applications*, J. Eur. Math. Soc. (JEMS)**20**(2018), no. 11, 2813–2858. MR**3861809**, DOI 10.4171/JEMS/825 - Robert Gustafson,
*The degenerate principal series for $\textrm {Sp}(2n)$*, Mem. Amer. Math. Soc.**33**(1981), no. 248, vi+81. MR**631958**, DOI 10.1090/memo/0248 - Chris Jantzen,
*Degenerate principal series for symplectic and odd-orthogonal groups*, Mem. Amer. Math. Soc.**124**(1996), no. 590, viii+100. MR**1346929**, DOI 10.1090/memo/0590 - Chris Jantzen,
*Reducibility of certain representations for symplectic and odd-orthogonal groups*, Compositio Math.**104**(1996), no. 1, 55–63. MR**1420710** - Chris Jantzen,
*On supports of induced representations for symplectic and odd-orthogonal groups*, Amer. J. Math.**119**(1997), no. 6, 1213–1262. MR**1481814**, DOI 10.1353/ajm.1997.0039 - Chris Jantzen,
*Duality for classical $p$-adic groups: the half-integral case*, Represent. Theory**22**(2018), 160–201. MR**3868005**, DOI 10.1090/ert/519 - Chris Jantzen and Henry H. Kim,
*Parametrization of the image of normalized intertwining operators*, Pacific J. Math.**199**(2001), no. 2, 367–415. MR**1847139**, DOI 10.2140/pjm.2001.199.367 - Henry H. Kim,
*Residual spectrum of split classical groups; contribution from Borel subgroups*, Pacific J. Math.**199**(2001), no. 2, 417–445. MR**1847140**, DOI 10.2140/pjm.2001.199.417 - Yeansu Kim,
*Strongly positive representations of $GSpin_{2n+1}$ and the Jacquet module method*, Math. Z.**279**(2015), no. 1-2, 271–296. With an appendix by Ivan Matić. MR**3299853**, DOI 10.1007/s00209-014-1367-6 - Y. Kim and I. Matić,
*Discrete series of odd general spin groups*, preprint, (2017). - Stephen S. Kudla and Stephen Rallis,
*Ramified degenerate principal series representations for $\textrm {Sp}(n)$*, Israel J. Math.**78**(1992), no. 2-3, 209–256. MR**1194967**, DOI 10.1007/BF02808058 - Ivan Matić,
*Strongly positive representations of metaplectic groups*, J. Algebra**334**(2011), 255–274. MR**2787663**, DOI 10.1016/j.jalgebra.2011.02.015 - Ivan Matić,
*Jacquet modules of strongly positive representations of the metaplectic group $\widetilde {Sp(n)}$*, Trans. Amer. Math. Soc.**365**(2013), no. 5, 2755–2778. MR**3020114**, DOI 10.1090/S0002-9947-2012-05725-4 - Ivan Matić,
*On discrete series subrepresentations of the generalized principal series*, Glas. Mat. Ser. III**51(71)**(2016), no. 1, 125–152. MR**3516188**, DOI 10.3336/gm.51.1.08 - Ivan Matić,
*Aubert duals of strongly positive discrete series and a class of unitarizable representations*, Proc. Amer. Math. Soc.**145**(2017), no. 8, 3561–3570. MR**3652807**, DOI 10.1090/proc/13461 - Ivan Matić,
*On Langlands quotients of the generalized principal series isomorphic to their Aubert duals*, Pacific J. Math.**289**(2017), no. 2, 395–415. MR**3667177**, DOI 10.2140/pjm.2017.289.395 - Ivan Matić,
*Aubert duals of discrete series: the first inductive step*, Glas. Mat. Ser. III**54(74)**(2019), no. 1, 133–178. MR**3964400**, DOI 10.3336/gm.54.1.07 - Ivan Matić and Marko Tadić,
*On Jacquet modules of representations of segment type*, Manuscripta Math.**147**(2015), no. 3-4, 437–476. MR**3360752**, DOI 10.1007/s00229-015-0727-9 - Roger Howe and Soo Teck Lee,
*Structure of holomorphic unitary representations: the case of $\textbf {U}_{\bf 2,2}$*, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, pp. 139–170. MR**3220927**, DOI 10.1090/conm/614/12258 - Colette Mœglin and Marko Tadić,
*Construction of discrete series for classical $p$-adic groups*, J. Amer. Math. Soc.**15**(2002), no. 3, 715–786. MR**1896238**, DOI 10.1090/S0894-0347-02-00389-2 - Goran Muić,
*Composition series of generalized principal series; the case of strongly positive discrete series*, Israel J. Math.**140**(2004), 157–202. MR**2054843**, DOI 10.1007/BF02786631 - Marko Tadić,
*Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups*, J. Algebra**177**(1995), no. 1, 1–33. MR**1356358**, DOI 10.1006/jabr.1995.1284 - Marko Tadić,
*On reducibility of parabolic induction*, Israel J. Math.**107**(1998), 29–91. MR**1658535**, DOI 10.1007/BF02764004 - Marko Tadić,
*On tempered and square integrable representations of classical $p$-adic groups*, Sci. China Math.**56**(2013), no. 11, 2273–2313. MR**3123571**, DOI 10.1007/s11425-013-4667-0 - A. V. Zelevinsky,
*Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$*, Ann. Sci. École Norm. Sup. (4)**13**(1980), no. 2, 165–210. MR**584084**, DOI 10.24033/asens.1379

## Additional Information

**Yeansu Kim**- Affiliation: Department of Mathematics Education, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju city, South Korea
- MR Author ID: 1094118
- ORCID: 0000-0001-9427-6136
- Email: ykim@chonnam.ac.kr
**Baiying Liu**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 953254
- Email: liu2053@purdue.edu
**Ivan Matić**- Affiliation: Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia
- MR Author ID: 779049
- ORCID: 0000-0001-9264-9293
- Email: imatic@mathos.hr
- Received by editor(s): July 6, 2019
- Received by editor(s) in revised form: February 22, 2020
- Published electronically: August 26, 2020
- Additional Notes: The first author was supported by Chonnam National University (Grant number: 2018-0978).

The second author was partially supported by NSF grants DMS-1702218, DMS-1848058, and by start-up funds from the Department of Mathematics at Purdue University.

The third author was partially supported by Croatian Science Foundation under the project IP-2018-01-3628. - © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory
**24**(2020), 403-434 - MSC (2010): Primary 22E35; Secondary 22E50, 11F70
- DOI: https://doi.org/10.1090/ert/548
- MathSciNet review: 4139900