Speh representations are relatively discrete
HTML articles powered by AMS MathViewer
- by Jerrod Manford Smith
- Represent. Theory 24 (2020), 525-550
- DOI: https://doi.org/10.1090/ert/550
- Published electronically: October 27, 2020
- PDF | Request permission
Abstract:
Let $F$ be a $p$-adic field of characteristic zero and odd residual characteristic. Let $\mathbf {Sp}_{2n}(F)$ denote the symplectic group defined over $F$, where $n\geq 2$. We prove that the Speh representations $\mathcal {U}(\delta ,2)$, where $\delta$ is a discrete series representation of $\mathbf {GL}_n(F)$, lie in the discrete spectrum of the $p$-adic symmetric space $\mathbf {Sp}_{2n}(F) \backslash \mathbf {GL}_{2n}(F)$.References
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Philippe Blanc and Patrick Delorme, Vecteurs distributions $H$-invariants de représentations induites, pour un espace symétrique réductif $p$-adique $G/H$, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 213–261 (French, with English and French summaries). MR 2401221, DOI 10.5802/aif.2349
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- William Casselman, Introduction to the theory of admissible representations of $p$-adic reductive groups, Unpublished manuscript, draft prepared by the Séminaire Paul Sally, 1995, Available at www.math.ubc.ca/$\sim$cass/research/publications.html.
- I. M. Gel′fand and D. A. Kajdan, Representations of the group $\textrm {GL}(n,K)$ where $K$ is a local field, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 95–118. MR 0404534
- A. G. Helminck and G. F. Helminck, A class of parabolic $k$-subgroups associated with symmetric $k$-varieties, Trans. Amer. Math. Soc. 350 (1998), no. 11, 4669–4691. MR 1443876, DOI 10.1090/S0002-9947-98-02029-7
- Michael J. Heumos and Stephen Rallis, Symplectic-Whittaker models for $\textrm {Gl}_n$, Pacific J. Math. 146 (1990), no. 2, 247–279. MR 1078382, DOI 10.2140/pjm.1990.146.247
- A. G. Helminck and S. P. Wang, On rationality properties of involutions of reductive groups, Adv. Math. 99 (1993), no. 1, 26–96. MR 1215304, DOI 10.1006/aima.1993.1019
- Hervé Jacquet and Stephen Rallis, Uniqueness of linear periods, Compositio Math. 102 (1996), no. 1, 65–123. MR 1394521
- F. Knop and B. Schalke, The dual group of a spherical variety, Trans. Moscow Math. Soc. 78 (2017), 187–216. MR 3738085, DOI 10.1090/mosc/270
- Shin-ichi Kato and Keiji Takano, Subrepresentation theorem for $p$-adic symmetric spaces, Int. Math. Res. Not. IMRN 11 (2008), Art. ID rnn028, 40. MR 2428854, DOI 10.1093/imrn/rnn028
- Shin-ichi Kato and Keiji Takano, Square integrability of representations on $p$-adic symmetric spaces, J. Funct. Anal. 258 (2010), no. 5, 1427–1451. MR 2566307, DOI 10.1016/j.jfa.2009.10.026
- Nathalie Lagier, Terme constant de fonctions sur un espace symétrique réductif $p$-adique, J. Funct. Anal. 254 (2008), no. 4, 1088–1145 (French, with English and French summaries). MR 2381204, DOI 10.1016/j.jfa.2007.07.012
- Omer Offen, On parabolic induction associated with a $p$-adic symmetric space, J. Number Theory 170 (2017), 211–227. MR 3541705, DOI 10.1016/j.jnt.2016.06.014
- Omer Offen and Eitan Sayag, On unitary representations of $\textrm {GL}_{2n}$ distinguished by the symplectic group, J. Number Theory 125 (2007), no. 2, 344–355. MR 2332593, DOI 10.1016/j.jnt.2006.10.018
- Omer Offen and Eitan Sayag, Global mixed periods and local Klyachko models for the general linear group, Int. Math. Res. Not. IMRN 1 (2008), Art. ID rnm 136, 25. MR 2417789, DOI 10.1093/imrn/rnm136
- Omer Offen and Eitan Sayag, Uniqueness and disjointness of Klyachko models, J. Funct. Anal. 254 (2008), no. 11, 2846–2865. MR 2414223, DOI 10.1016/j.jfa.2008.01.004
- Alain Robert, Introduction to the representation theory of compact and locally compact groups, London Mathematical Society Lecture Note Series, vol. 80, Cambridge University Press, Cambridge-New York, 1983. MR 690955, DOI 10.1017/CBO9780511661891
- François Rodier, Whittaker models for admissible representations of reductive $p$-adic split groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 425–430. MR 0354942
- Jerrod Manford Smith, Local unitary periods and relative discrete series, Pacific J. Math. 297 (2018), no. 1, 225–256. MR 3864235, DOI 10.2140/pjm.2018.297.225
- Jerrod Manford Smith, Relative discrete series representations for two quotients of $p$-adic $\mathbf {GL}_n$, Canad. J. Math. 70 (2018), no. 6, 1339–1372. MR 3850546, DOI 10.4153/CJM-2017-047-7
- Jerrod Manford Smith, The support of closed orbit relative matrix coefficients, manuscripta math. (2020).
- Yiannis Sakellaridis and Akshay Venkatesh, Periods and harmonic analysis on spherical varieties, Astérisque 396 (2017), viii+360 (English, with English and French summaries). MR 3764130
- Marko Tadić, Unitary dual of $p$-adic $\textrm {GL}(n)$. Proof of Bernstein conjectures, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 39–42. MR 788387, DOI 10.1090/S0273-0979-1985-15355-8
- Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382. MR 870688, DOI 10.24033/asens.1510
- Bin Xu, On Mœglin’s parametrization of Arthur packets for $p$-adic quasisplit $Sp(N)$ and $SO(N)$, Canad. J. Math. 69 (2017), no. 4, 890–960. MR 3679701, DOI 10.4153/CJM-2016-029-3
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Jerrod Manford Smith
- Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
- MR Author ID: 964846
- Email: jerrod.smith@ucalgary.ca
- Received by editor(s): August 3, 2018
- Received by editor(s) in revised form: July 9, 2020
- Published electronically: October 27, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory 24 (2020), 525-550
- MSC (2010): Primary 22E50; Secondary 22E35
- DOI: https://doi.org/10.1090/ert/550
- MathSciNet review: 4166987