Global crystal bases for integrable modules over a quantum symmetric pair of type AIII
Author:
Hideya Watanabe
Journal:
Represent. Theory 25 (2021), 27-66
MSC (2020):
Primary 17B10
DOI:
https://doi.org/10.1090/ert/556
Published electronically:
January 12, 2021
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we study basic properties of global -crystal bases for integrable modules over a quantum symmetric pair coideal subalgebra
associated to the Satake diagram of type AIII without black nodes. Also, we obtain an intrinsic characterization of the
-crystal bases, whose original definition is artificial.
- [BW18a] Huanchen Bao and Weiqiang Wang, A new approach to Kazhdan-Lusztig theory of type 𝐵 via quantum symmetric pairs, Astérisque 402 (2018), vii+134 (English, with English and French summaries). MR 3864017
- [BW18b] Huanchen Bao and Weiqiang Wang, Canonical bases arising from quantum symmetric pairs, Invent. Math. 213 (2018), no. 3, 1099–1177. MR 3842062, https://doi.org/10.1007/s00222-018-0801-5
- [BWW18] Huanchen Bao, Weiqiang Wang, and Hideya Watanabe, Multiparameter quantum Schur duality of type B, Proc. Amer. Math. Soc. 146 (2018), no. 8, 3203–3216. MR 3803649, https://doi.org/10.1090/proc/13749
- [BWW20] Huanchen Bao, Weiqiang Wang, and Hideya Watanabe, Canonical bases for tensor products and super Kazhdan-Lusztig theory, J. Pure Appl. Algebra 224 (2020), no. 8, 106347, 9. MR 4074585, https://doi.org/10.1016/j.jpaa.2020.106347
- [BI03] Cédric Bonnafé and Lacrimioara Iancu, Left cells in type 𝐵_{𝑛} with unequal parameters, Represent. Theory 7 (2003), 587–609. MR 2017068, https://doi.org/10.1090/S1088-4165-03-00188-2
- [DDPW08] Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, Mathematical Surveys and Monographs, vol. 150, American Mathematical Society, Providence, RI, 2008. MR 2457938
- [Deo87] Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, https://doi.org/10.1016/0021-8693(87)90232-8
- [HK02] Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971
- [K90] Masaki Kashiwara, Crystalizing the 𝑞-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260. MR 1090425
- [K93] Masaki Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485. MR 1203234, https://doi.org/10.1215/S0012-7094-93-06920-7
- [K02] Masaki Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117–175. MR 1890649, https://doi.org/10.1215/S0012-9074-02-11214-9
- [KL79] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, https://doi.org/10.1007/BF01390031
- [LL19] C.-J. Lai and L. Luo, Schur algebras and quantum symmetric pairs with unequal parameters, 1808.00938v3.
- [Le99] Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767. MR 1717368, https://doi.org/10.1006/jabr.1999.8015
- [L90a] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, https://doi.org/10.1090/S0894-0347-1990-1035415-6
- [L90b] George Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, https://doi.org/10.1007/BF00147341
- [L10] George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR 2759715
- [L03] G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442
- [W17]
H. Watanabe, Crystal basis theory for a quantum symmetric pair
, to appear in Int. Math. Res. Not., 1704.01277.
- [X94] Nan Hua Xi, Representations of affine Hecke algebras, Lecture Notes in Mathematics, vol. 1587, Springer-Verlag, Berlin, 1994. MR 1320509
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 17B10
Retrieve articles in all journals with MSC (2020): 17B10
Additional Information
Hideya Watanabe
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8052, Japan
Email:
hideya@kurims.kyoto-u.ac.jp
DOI:
https://doi.org/10.1090/ert/556
Keywords:
Quantum symmetric pair,
Hecke algebra,
global crystal basis
Received by editor(s):
November 16, 2019
Received by editor(s) in revised form:
September 21, 2020
Published electronically:
January 12, 2021
Additional Notes:
This work was supported by JSPS KAKENHI grant number 17J00172
Article copyright:
© Copyright 2021
American Mathematical Society