Global crystal bases for integrable modules over a quantum symmetric pair of type AIII
HTML articles powered by AMS MathViewer
- by Hideya Watanabe
- Represent. Theory 25 (2021), 27-66
- DOI: https://doi.org/10.1090/ert/556
- Published electronically: January 12, 2021
- PDF | Request permission
Abstract:
In this paper, we study basic properties of global $\jmath$-crystal bases for integrable modules over a quantum symmetric pair coideal subalgebra $\mathbf {U}^{\jmath }$ associated to the Satake diagram of type AIII without black nodes. Also, we obtain an intrinsic characterization of the $\jmath$-crystal bases, whose original definition is artificial.References
- Huanchen Bao and Weiqiang Wang, A new approach to Kazhdan-Lusztig theory of type $B$ via quantum symmetric pairs, Astérisque 402 (2018), vii+134 (English, with English and French summaries). MR 3864017
- Huanchen Bao and Weiqiang Wang, Canonical bases arising from quantum symmetric pairs, Invent. Math. 213 (2018), no. 3, 1099–1177. MR 3842062, DOI 10.1007/s00222-018-0801-5
- Huanchen Bao, Weiqiang Wang, and Hideya Watanabe, Multiparameter quantum Schur duality of type B, Proc. Amer. Math. Soc. 146 (2018), no. 8, 3203–3216. MR 3803649, DOI 10.1090/proc/13749
- Huanchen Bao, Weiqiang Wang, and Hideya Watanabe, Canonical bases for tensor products and super Kazhdan-Lusztig theory, J. Pure Appl. Algebra 224 (2020), no. 8, 106347, 9. MR 4074585, DOI 10.1016/j.jpaa.2020.106347
- Cédric Bonnafé and Lacrimioara Iancu, Left cells in type $B_n$ with unequal parameters, Represent. Theory 7 (2003), 587–609. MR 2017068, DOI 10.1090/S1088-4165-03-00188-2
- Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, Mathematical Surveys and Monographs, vol. 150, American Mathematical Society, Providence, RI, 2008. MR 2457938, DOI 10.1090/surv/150
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, DOI 10.1016/0021-8693(87)90232-8
- Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971, DOI 10.1090/gsm/042
- Masaki Kashiwara, Crystalizing the $q$-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260. MR 1090425, DOI 10.1007/BF02097367
- Masaki Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485. MR 1203234, DOI 10.1215/S0012-7094-93-06920-7
- Masaki Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117–175. MR 1890649, DOI 10.1215/S0012-9074-02-11214-9
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- C.-J. Lai and L. Luo, Schur algebras and quantum symmetric pairs with unequal parameters, arXiv:1808.00938v3.
- Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767. MR 1717368, DOI 10.1006/jabr.1999.8015
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, DOI 10.1007/BF00147341
- George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR 2759715, DOI 10.1007/978-0-8176-4717-9
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
- H. Watanabe, Crystal basis theory for a quantum symmetric pair $(\mathbf {U},\mathbf {U}^{\jmath })$, to appear in Int. Math. Res. Not., arXiv:1704.01277.
- Nan Hua Xi, Representations of affine Hecke algebras, Lecture Notes in Mathematics, vol. 1587, Springer-Verlag, Berlin, 1994. MR 1320509, DOI 10.1007/BFb0074130
Bibliographic Information
- Hideya Watanabe
- Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8052, Japan
- MR Author ID: 1196919
- ORCID: 0000-0002-7705-8783
- Email: hideya@kurims.kyoto-u.ac.jp
- Received by editor(s): November 16, 2019
- Received by editor(s) in revised form: September 21, 2020
- Published electronically: January 12, 2021
- Additional Notes: This work was supported by JSPS KAKENHI grant number 17J00172
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 27-66
- MSC (2020): Primary 17B10
- DOI: https://doi.org/10.1090/ert/556
- MathSciNet review: 4198491