Coherent IC-sheaves on type $A_{n}$ affine Grassmannians and dual canonical basis of affine type $A_{1}$
HTML articles powered by AMS MathViewer
- by Michael Finkelberg and Ryo Fujita
- Represent. Theory 25 (2021), 67-89
- DOI: https://doi.org/10.1090/ert/558
- Published electronically: January 28, 2021
- PDF | Request permission
Abstract:
The convolution ring $K^{GL_n(\mathcal {O})\rtimes \mathbb {C}^\times }(\mathrm {Gr}_{GL_n})$ was identified with a quantum unipotent cell of the loop group $LSL_2$ in Cautis and Williams [J. Amer. Math. Soc. 32 (2019), pp. 709–778]. We identify the basis formed by the classes of irreducible equivariant perverse coherent sheaves with the dual canonical basis of the quantum unipotent cell.References
- Pramod Narahari Achar, Equivariant coherent sheaves on the nilpotent cone for complex reductive Lie groups, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2717009
- Pramod N. Achar and William D. Hardesty, Calculations with graded perverse-coherent sheaves, Q. J. Math. 70 (2019), no. 4, 1327–1352. MR 4045103, DOI 10.1093/qmath/haz016
- Dmitry Arinkin and Roman Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J. 10 (2010), no. 1, 3–29, 271 (English, with English and Russian summaries). MR 2668828, DOI 10.17323/1609-4514-2010-10-1-3-29
- Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405–455. MR 2146350, DOI 10.1016/j.aim.2004.08.003
- Roman Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1–18. MR 1973365, DOI 10.1090/S1088-4165-03-00158-4
- Roman Bezrukavnikov, Cohomology of tilting modules over quantum groups and $t$-structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), no. 2, 327–357. MR 2249802, DOI 10.1007/s00222-006-0514-z
- Roman Bezrukavnikov, Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math. 170 (2009), 185–206. MR 2506323, DOI 10.1007/s11856-009-0025-x
- Roman Bezrukavnikov, Michael Finkelberg, and Ivan Mirković, Equivariant homology and $K$-theory of affine Grassmannians and Toda lattices, Compos. Math. 141 (2005), no. 3, 746–768. MR 2135527, DOI 10.1112/S0010437X04001228
- Sabin Cautis and Harold Williams, Cluster theory of the coherent Satake category, J. Amer. Math. Soc. 32 (2019), no. 3, 709–778. MR 3981987, DOI 10.1090/jams/918
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Michael Finkelberg, Alexander Kuznetsov, Leonid Rybnikov, and Galyna Dobrovolska, Towards a cluster structure on trigonometric zastava, Selecta Math. (N.S.) 24 (2018), no. 1, 187–225. MR 3769730, DOI 10.1007/s00029-016-0287-1
- Michael Finkelberg and Alexander Tsymbaliuk, Shifted quantum affine algebras: integral forms in type $A$, Arnold Math. J. 5 (2019), no. 2-3, 197–283. MR 4031357, DOI 10.1007/s40598-019-00118-7
- C. Geiß, B. Leclerc, and J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math. (N.S.) 19 (2013), no. 2, 337–397. MR 3090232, DOI 10.1007/s00029-012-0099-x
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, Acta Math. 206 (2011), no. 2, 245–310. MR 2810853, DOI 10.1007/s11511-011-0063-1
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 349–426. MR 3758148, DOI 10.1090/jams/895
- Yoshiyuki Kimura, Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math. 52 (2012), no. 2, 277–331. MR 2914878, DOI 10.1215/21562261-1550976
- Y. Kimura and H. Oya, Twist automorphisms on quantum unipotent cells and dual canonical bases, Int. Math. Res. Not. IMRN rnz040, 2019. arXiv:1701.02268v3.
- Philipp Lampe, A quantum cluster algebra of Kronecker type and the dual canonical basis, Int. Math. Res. Not. IMRN 13 (2011), 2970–3005. MR 2817684, DOI 10.1093/imrn/rnq162
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Viktor Ostrik, On the equivariant $K$-theory of the nilpotent cone, Represent. Theory 4 (2000), 296–305. MR 1773863, DOI 10.1090/S1088-4165-00-00089-3
Bibliographic Information
- Michael Finkelberg
- Affiliation: Department of Mathematics, National Research University Higher School of Economics, Russian Federation, 6 Usacheva st., Moscow, Russia 119048; Skolkovo Institute of Science and Technology, Moscow, Russia; and Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- MR Author ID: 304673
- Email: fnklberg@gmail.com
- Ryo Fujita
- Affiliation: Institut de Mathématiques de Jussieu-Paris Rive Gauche, IMJ-PRG, Université de Paris, Bâtiment Sophie Germain, F-75013 Paris, France
- MR Author ID: 1243866
- Email: ryo.fujita@imj-prg.fr
- Received by editor(s): February 27, 2019
- Received by editor(s) in revised form: November 19, 2020
- Published electronically: January 28, 2021
- Additional Notes: The first author was partially funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project ‘5-100’. The second author was supported by Grant-in-Aid for JSPS Research Fellow (No. 18J10669) and in part by Kyoto Top Global University program.
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 67-89
- MSC (2020): Primary 17B37, 22E67; Secondary 13F60
- DOI: https://doi.org/10.1090/ert/558
- MathSciNet review: 4205967