Coherent IC-sheaves on type affine Grassmannians and dual canonical basis of affine type
Authors:
Michael Finkelberg and Ryo Fujita
Journal:
Represent. Theory 25 (2021), 67-89
MSC (2020):
Primary 17B37, 22E67; Secondary 13F60
DOI:
https://doi.org/10.1090/ert/558
Published electronically:
January 28, 2021
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The convolution ring was identified with a quantum unipotent cell of the loop group
in Cautis and Williams [J. Amer. Math. Soc. 32 (2019), pp. 709-778]. We identify the basis formed by the classes of irreducible equivariant perverse coherent sheaves with the dual canonical basis of the quantum unipotent cell.
- [A01] Pramod Narahari Achar, Equivariant coherent sheaves on the nilpotent cone for complex reductive Lie groups, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2717009
- [AH19] Pramod N. Achar and William D. Hardesty, Calculations with graded perverse-coherent sheaves, Q. J. Math. 70 (2019), no. 4, 1327–1352. MR 4045103, https://doi.org/10.1093/qmath/haz016
- [AB10] Dmitry Arinkin and Roman Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J. 10 (2010), no. 1, 3–29, 271 (English, with English and Russian summaries). MR 2668828, https://doi.org/10.17323/1609-4514-2010-10-1-3-29
- [BZ05] Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405–455. MR 2146350, https://doi.org/10.1016/j.aim.2004.08.003
- [B03] Roman Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1–18. MR 1973365, https://doi.org/10.1090/S1088-4165-03-00158-4
- [B06] Roman Bezrukavnikov, Cohomology of tilting modules over quantum groups and 𝑡-structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), no. 2, 327–357. MR 2249802, https://doi.org/10.1007/s00222-006-0514-z
- [B09] Roman Bezrukavnikov, Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math. 170 (2009), 185–206. MR 2506323, https://doi.org/10.1007/s11856-009-0025-x
- [BFM05] Roman Bezrukavnikov, Michael Finkelberg, and Ivan Mirković, Equivariant homology and 𝐾-theory of affine Grassmannians and Toda lattices, Compos. Math. 141 (2005), no. 3, 746–768. MR 2135527, https://doi.org/10.1112/S0010437X04001228
- [CW19] Sabin Cautis and Harold Williams, Cluster theory of the coherent Satake category, J. Amer. Math. Soc. 32 (2019), no. 3, 709–778. MR 3981987, https://doi.org/10.1090/jams/918
- [CG97] Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- [FKR18] Michael Finkelberg, Alexander Kuznetsov, Leonid Rybnikov, and Galyna Dobrovolska, Towards a cluster structure on trigonometric zastava, Selecta Math. (N.S.) 24 (2018), no. 1, 187–225. MR 3769730, https://doi.org/10.1007/s00029-016-0287-1
- [FT19] Michael Finkelberg and Alexander Tsymbaliuk, Shifted quantum affine algebras: integral forms in type 𝐴, Arnold Math. J. 5 (2019), no. 2-3, 197–283. MR 4031357, https://doi.org/10.1007/s40598-019-00118-7
- [GLS13] C. Geiß, B. Leclerc, and J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math. (N.S.) 19 (2013), no. 2, 337–397. MR 3090232, https://doi.org/10.1007/s00029-012-0099-x
- [GSV11] Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, Acta Math. 206 (2011), no. 2, 245–310. MR 2810853, https://doi.org/10.1007/s11511-011-0063-1
- [EGA IV] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- [H66] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. MR 0222093
- [J04] Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- [KKKO18] Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 349–426. MR 3758148, https://doi.org/10.1090/jams/895
- [K12] Yoshiyuki Kimura, Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math. 52 (2012), no. 2, 277–331. MR 2914878, https://doi.org/10.1215/21562261-1550976
- [KO19] Y. Kimura and H. Oya, Twist automorphisms on quantum unipotent cells and dual canonical bases, Int. Math. Res. Not. IMRN rnz040, 2019. 1701.02268v3.
- [L14] Philipp Lampe, A quantum cluster algebra of Kronecker type and the dual canonical basis, Int. Math. Res. Not. IMRN 13 (2011), 2970–3005. MR 2817684, https://doi.org/10.1093/imrn/rnq162
- [L81] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, https://doi.org/10.1016/0001-8708(81)90038-4
- [L93] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- [O00] Viktor Ostrik, On the equivariant 𝐾-theory of the nilpotent cone, Represent. Theory 4 (2000), 296–305. MR 1773863, https://doi.org/10.1090/S1088-4165-00-00089-3
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 17B37, 22E67, 13F60
Retrieve articles in all journals with MSC (2020): 17B37, 22E67, 13F60
Additional Information
Michael Finkelberg
Affiliation:
Department of Mathematics, National Research University Higher School of Economics, Russian Federation, 6 Usacheva st., Moscow, Russia 119048; Skolkovo Institute of Science and Technology, Moscow, Russia; and Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
Email:
fnklberg@gmail.com
Ryo Fujita
Affiliation:
Institut de Mathématiques de Jussieu-Paris Rive Gauche, IMJ-PRG, Université de Paris, Bâtiment Sophie Germain, F-75013 Paris, France
Email:
ryo.fujita@imj-prg.fr
DOI:
https://doi.org/10.1090/ert/558
Received by editor(s):
February 27, 2019
Received by editor(s) in revised form:
November 19, 2020
Published electronically:
January 28, 2021
Additional Notes:
The first author was partially funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project ‘5-100’. The second author was supported by Grant-in-Aid for JSPS Research Fellow (No. 18J10669) and in part by Kyoto Top Global University program.
Article copyright:
© Copyright 2021
American Mathematical Society