Finite dimensional semigroups of unitary endomorphisms of standard subspaces
Author:
Karl-H. Neeb
Journal:
Represent. Theory 25 (2021), 300-343
MSC (2020):
Primary 22E45; Secondary 81R05, 81T05
DOI:
https://doi.org/10.1090/ert/566
Published electronically:
April 27, 2021
MathSciNet review:
4248936
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Let $\mathtt {V}$ be a standard subspace in the complex Hilbert space $\mathcal {H}$ and $G$ be a finite dimensional Lie group of unitary and antiunitary operators on $\mathcal {H}$ containing the modular group $(\Delta _{\mathtt {V}}^{it})_{t \in \mathbb {R}}$ of $\mathtt {V}$ and the corresponding modular conjugation $J_{\mathtt {V}}$. We study the semigroup \[ S_{\mathtt {V}} = \{ g\in G \cap \operatorname {U}(\mathcal {H})\colon g\mathtt {V} \subseteq \mathtt {V}\} \] and determine its Lie wedge $\operatorname {\textbf {L}}(S_{\mathtt {V}}) = \{ x \in \mathfrak {g} \colon \exp (\mathbb {R}_+ x) \subseteq S_{\mathtt {V}}\}$, i.e., the generators of its one-parameter subsemigroups in the Lie algebra $\mathfrak {g}$ of $G$. The semigroup $S_{\mathtt {V}}$ is analyzed in terms of antiunitary representations and their analytic extension to semigroups of the form $G \exp (iC)$, where $C \subseteq \mathfrak {g}$ is an $\operatorname {Ad}(G)$-invariant closed convex cone.
Our main results assert that the Lie wedge $\operatorname {\textbf {L}}(S_{\mathtt {V}})$ spans a $3$-graded Lie subalgebra in which it can be described explicitly in terms of the involution $\tau$ of $\mathfrak {g}$ induced by $J_{\mathtt {V}}$, the generator $h \in \mathfrak {g}^\tau$ of the modular group, and the positive cone of the corresponding representation. We also derive some global information on the semigroup $S_{\mathtt {V}}$ itself.
- Huzihiro Araki, A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. Mathematical Phys. 4 (1963), 1343–1362. MR 158666, DOI https://doi.org/10.1063/1.1703912
- Huzihiro Araki, von Neumann algebras of local observables for free scalar field, J. Mathematical Phys. 5 (1964), 1–13. MR 160487, DOI https://doi.org/10.1063/1.1704063
- Huzihiro Araki, Mathematical theory of quantum fields, International Series of Monographs on Physics, vol. 101, Oxford University Press, New York, 1999. Translated from the 1993 Japanese original by Ursula Carow-Watamura. MR 1799198
- Huzihiro Araki and László Zsidó, Extension of the structure theorem of Borchers and its application to half-sided modular inclusions, Rev. Math. Phys. 17 (2005), no. 5, 491–543. MR 2153772, DOI https://doi.org/10.1142/S0129055X05002388
- Hellmut Baumgärtel, Matthias Jurke, and Fernando Lledó, Twisted duality of the CAR-algebra, J. Math. Phys. 43 (2002), no. 8, 4158–4179. MR 1915649, DOI https://doi.org/10.1063/1.1483376
- H.-J. Borchers, The CPT-theorem in two-dimensional theories of local observables, Comm. Math. Phys. 143 (1992), no. 2, 315–332. MR 1145798
- H. J. Borchers, On the use of modular groups in quantum field theory, Ann. Inst. H. Poincaré Phys. Théor. 63 (1995), no. 4, 331–382 (English, with English and French summaries). New problems in the general theory of fields and particles (Paris, 1994). MR 1367142
- H. J. Borchers, On the lattice of subalgebras associated with the principle of half-sided modular inclusion, Lett. Math. Phys. 40 (1997), no. 4, 371–390. MR 1453247, DOI https://doi.org/10.1023/A%3A1007396816791
- H. J. Borchers, On revolutionizing quantum field theory with Tomita’s modular theory, J. Math. Phys. 41 (2000), no. 6, 3604–3673. MR 1768633, DOI https://doi.org/10.1063/1.533323
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum statistical mechanics. 1, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, New York, 1987. $C^\ast $- and $W^\ast $-algebras, symmetry groups, decomposition of states. MR 887100
- R. Brunetti, D. Guido, and R. Longo, Modular structure and duality in conformal quantum field theory, Comm. Math. Phys. 156 (1993), no. 1, 201–219. MR 1234110
- R. Brunetti, D. Guido, and R. Longo, Group cohomology, modular theory and space-time symmetries, Rev. Math. Phys. 7 (1995), no. 1, 57–71. MR 1310766, DOI https://doi.org/10.1142/S0129055X95000050
- R. Brunetti, D. Guido, and R. Longo, Modular localization and Wigner particles, Rev. Math. Phys. 14 (2002), no. 7-8, 759–785. Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday. MR 1932665, DOI https://doi.org/10.1142/S0129055X02001387
- Detlev Buchholz, Olaf Dreyer, Martin Florig, and Stephen J. Summers, Geometric modular action and spacetime symmetry groups, Rev. Math. Phys. 12 (2000), no. 4, 475–560. MR 1763842, DOI https://doi.org/10.1142/S0129055X00000174
- Detlev Buchholz, Gandalf Lechner, and Stephen J. Summers, Warped convolutions, Rieffel deformations and the construction of quantum field theories, Comm. Math. Phys. 304 (2011), no. 1, 95–123. MR 2793931, DOI https://doi.org/10.1007/s00220-010-1137-1
- Detlev Buchholz and Stephen J. Summers, An algebraic characterization of vacuum states in Minkowski space, Comm. Math. Phys. 155 (1993), no. 3, 449–458. MR 1231637
- Paul R. Chernoff, Note on product formulas for operator semigroups, J. Functional Analysis 2 (1968), 238–242. MR 0231238, DOI https://doi.org/10.1016/0022-1236%2868%2990020-7
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Rudolf Haag, Local quantum physics, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996. Fields, particles, algebras. MR 1405610
- Joachim Hilgert, Karl Heinrich Hofmann, and Jimmie D. Lawson, Lie groups, convex cones, and semigroups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Oxford Science Publications. MR 1032761
- Joachim Hilgert and Karl-Hermann Neeb, Lie semigroups and their applications, Lecture Notes in Mathematics, vol. 1552, Springer-Verlag, Berlin, 1993. MR 1317811
- Joachim Hilgert and Karl-Hermann Neeb, Structure and geometry of Lie groups, Springer Monographs in Mathematics, Springer, New York, 2012. MR 3025417
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
- Karl H. Hofmann and Sidney A. Morris, The structure of compact groups, De Gruyter Studies in Mathematics, vol. 25, Walter de Gruyter & Co., Berlin, 1998. A primer for the student—a handbook for the expert. MR 1646190
- Christian D. Jäkel and Jens Mund, The Haag-Kastler axioms for the $\mathcal P(\varphi )_2$ model on the de Sitter space, Ann. Henri Poincaré 19 (2018), no. 3, 959–977. MR 3769251, DOI https://doi.org/10.1007/s00023-018-0647-9
- Hideki Kosaki, Positive cones associated with a von Neumann algebra, Math. Scand. 47 (1980), no. 2, 295–307. MR 612702, DOI https://doi.org/10.7146/math.scand.a-11891
- Bernhard Krötz and Karl-Hermann Neeb, On hyperbolic cones and mixed symmetric spaces, J. Lie Theory 6 (1996), no. 1, 69–146. MR 1406006
- Gandalf Lechner, Algebraic constructive quantum field theory: integrable models and deformation techniques, Advances in algebraic quantum field theory, Math. Phys. Stud., Springer, Cham, 2015, pp. 397–448. MR 3409593
- Gandalf Lechner and Roberto Longo, Localization in nets of standard spaces, Comm. Math. Phys. 336 (2015), no. 1, 27–61. MR 3322366, DOI https://doi.org/10.1007/s00220-014-2199-2
- Roberto Longo, Real Hilbert subspaces, modular theory, ${\rm SL}(2,\Bbb R)$ and CFT, Von Neumann algebras in Sibiu, Theta Ser. Adv. Math., vol. 10, Theta, Bucharest, 2008, pp. 33–91. MR 2512325
- Roberto Longo and Edward Witten, An algebraic construction of boundary quantum field theory, Comm. Math. Phys. 303 (2011), no. 1, 213–232. MR 2775120, DOI https://doi.org/10.1007/s00220-010-1133-5
- Stéphane Merigon and Karl-Hermann Neeb, Analytic extension techniques for unitary representations of Banach-Lie groups, Int. Math. Res. Not. IMRN 18 (2012), 4260–4300. MR 2975382, DOI https://doi.org/10.1093/imrn/rnr174
- Vincenzo Morinelli, The Bisognano-Wichmann property on nets of standard subspaces, some sufficient conditions, Ann. Henri Poincaré 19 (2018), no. 3, 937–958. MR 3769250, DOI https://doi.org/10.1007/s00023-017-0636-4
- V. Morinelli and K.-H. Neeb, Covariant homogeneous nets of standard subspaces, Commun. Math. Phys (2021). DOI 10.1007/s00220-021-04046-6.
- Vincenzo Morinelli and Yoh Tanimoto, Scale and Möbius covariance in two-dimensional Haag-Kastler net, Comm. Math. Phys. 371 (2019), no. 2, 619–650. MR 4019915, DOI https://doi.org/10.1007/s00220-019-03410-x
- Karl-Hermann Neeb, Holomorphy and convexity in Lie theory, De Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin, 2000. MR 1740617
- Karl-H. Neeb, On analytic vectors for unitary representations of infinite dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 5, 1839–1874 (2012) (English, with English and French summaries). MR 2961842, DOI https://doi.org/10.5802/aif.2660
- Karl-Hermann Neeb, On the geometry of standard subspaces, Representation theory and harmonic analysis on symmetric spaces, Contemp. Math., vol. 714, Amer. Math. Soc., Providence, RI, 2018, pp. 199–223. MR 3847251, DOI https://doi.org/10.1090/conm/714/14330
- K.-H. Neeb, Semigroups in 3-graded Lie groups and endomorphisms of standard subspaces, Kyoto Math. J., to appear, arXiv:1912.13367, 2020.
- K.-H. Neeb and G. Ólafsson, Antiunitary representations and modular theory, in “50th Sophus Lie Seminar”, Eds. K. Grabowska et al, J. Grabowski, A. Fialowski and K.-H. Neeb; Banach Center Publications 113 (2017), 291–362.
- Karl-Hermann Neeb and Gestur Ólafsson, Reflection positivity, SpringerBriefs in Mathematical Physics, vol. 32, Springer, Cham, 2018. A representation theoretic perspective. MR 3822306
- Karl-Hermann Neeb and Gestur Ólafsson, Nets of standard subspaces on Lie groups, Adv. Math. 384 (2021), 107715. MR 4242900, DOI https://doi.org/10.1016/j.aim.2021.107715
- K.-H. Neeb and G. Ólafsson, Wedge domains in non-compactly causal symmetric spaces, in preparation.
- K.-H. Neeb and G. Ólafsson, Wedge domains in compactly causal symmetric spaces, in preparation.
- Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. MR 107176, DOI https://doi.org/10.2307/1970331
- D. Oeh, Analytic extensions of representations of $*$-subsemigroups without polar decomposition, Internat. Math. Res. Notices, 2020, DOI 10.1093/imrn/rnz342.
- D. Oeh, Classification of $3$-graded causal subalgebras of real simple Lie algebras, Transform. Groups, 2021, DOI 10.1007/s00031-020-09635-8.
- D. Oeh, Lie wedges of endomorphism semigroups of standard subspaces in admissible Lie algebras, arXiv:math.RT:2007.13445v1, 2020.
- G. I. Ol′shanskiĭ, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funktsional. Anal. i Prilozhen. 15 (1981), no. 4, 53–66, 96 (Russian). MR 639200
- A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Barry Simon, The $P(\phi )_{2}$ Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics. MR 0489552
- Yoh Tanimoto, Inclusions and positive cones of von Neumann algebras, J. Operator Theory 64 (2010), no. 2, 435–452. MR 2718952
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- Hans-Werner Wiesbrock, A comment on a recent work of H.-J. Borchers: “The CPT-theorem in two-dimensional theories of local observables” [Comm. Math. Phys. 143 (1992), no. 2, 315–332; MR1145798 (92m:46104)], Lett. Math. Phys. 25 (1992), no. 2, 157–159. MR 1182035, DOI https://doi.org/10.1007/BF00398312
- Hans-Werner Wiesbrock, Half-sided modular inclusions of von-Neumann-algebras, Comm. Math. Phys. 157 (1993), no. 1, 83–92. MR 1244859
- Hans-Werner Wiesbrock, Symmetries and half-sided modular inclusions of von Neumann algebras, Lett. Math. Phys. 28 (1993), no. 2, 107–114. MR 1229893, DOI https://doi.org/10.1007/BF00750303
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 22E45, 81R05, 81T05
Retrieve articles in all journals with MSC (2020): 22E45, 81R05, 81T05
Additional Information
Karl-H. Neeb
Affiliation:
Department Mathematik, FAU Erlangen-Nürnberg, Cauerstrasse 11, 91058-Erlangen, Germany
MR Author ID:
288679
Email:
neeb@math.fau.de
Received by editor(s):
May 21, 2019
Received by editor(s) in revised form:
June 29, 2020, and February 9, 2021
Published electronically:
April 27, 2021
Additional Notes:
The author was supported by DFG-grant NE 413/10-1.
Article copyright:
© Copyright 2021
American Mathematical Society