Quivers for $\mathrm {SL}_{2}$ tilting modules
Authors:
Daniel Tubbenhauer and Paul Wedrich
Journal:
Represent. Theory 25 (2021), 440-480
MSC (2020):
Primary 20G05, 20C20; Secondary 16D90, 17B10, 20G40
DOI:
https://doi.org/10.1090/ert/569
Published electronically:
June 3, 2021
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Using diagrammatic methods, we define a quiver with relations depending on a prime $\mathsf {p}$ and show that the associated path algebra describes the category of tilting modules for $\mathrm {SL}_{2}$ in characteristic $\mathsf {p}$. Along the way we obtain a presentation for morphisms between $\mathsf {p}$-Jones–Wenzl projectors.
- Henning Haahr Andersen, Jens Jørgensen, and Peter Landrock, The projective indecomposable modules of ${\rm SL}(2,\,p^{n})$, Proc. London Math. Soc. (3) 46 (1983), no. 1, 38–52. MR 684821, DOI https://doi.org/10.1112/plms/s3-46.1.38
- Henning Haahr Andersen, Catharina Stroppel, and Daniel Tubbenhauer, Cellular structures using $U_q$-tilting modules, Pacific J. Math. 292 (2018), no. 1, 21–59. MR 3708257, DOI https://doi.org/10.2140/pjm.2018.292.21
- Henning Haahr Andersen, Catharina Stroppel, and Daniel Tubbenhauer, Semisimplicity of Hecke and (walled) Brauer algebras, J. Aust. Math. Soc. 103 (2017), no. 1, 1–44. MR 3679014, DOI https://doi.org/10.1017/S1446788716000392
- H. H. Andersen and D. Tubbenhauer, Diagram categories for ${\bf {U}}_q$-tilting modules at roots of unity, Transform. Groups 22 (2017), no. 1, 29–89. MR 3620765, DOI https://doi.org/10.1007/s00031-016-9363-z
- J. Brundan and C. Stroppel, Semi-infinite highest weight categories, 2018. URL: arXiv:1808.08022.
- Gaston Burrull, Nicolas Libedinsky, and Paolo Sentinelli, $p$-Jones-Wenzl idempotents, Adv. Math. 352 (2019), 246–264. MR 3959656, DOI https://doi.org/10.1016/j.aim.2019.06.005
- R. Carter and E. Cline, The submodule structure of Weyl modules for groups of type $A_{1}$, Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) Academic Press, New York, 1976, pp. 303–311. MR 0399281
- Sabin Cautis, Joel Kamnitzer, and Scott Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014), no. 1-2, 351–390. MR 3263166, DOI https://doi.org/10.1007/s00208-013-0984-4
- Stephen Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39–60. MR 1200163, DOI https://doi.org/10.1007/BF02571640
- Stephen Doty and Anne Henke, Decomposition of tensor products of modular irreducibles for ${\rm SL}_2$, Q. J. Math. 56 (2005), no. 2, 189–207. MR 2143497, DOI https://doi.org/10.1093/qmath/hah027
- B. Elias, Light ladders and clasp conjectures, 2015. URL: arXiv:1510.06840.
- Ben Elias, Quantum Satake in type $A$. Part I, J. Comb. Algebra 1 (2017), no. 1, 63–125. MR 3589911, DOI https://doi.org/10.4171/JCA/1-1-4
- K. Erdmann and A. Henke, On Schur algebras, Ringel duality and symmetric groups, J. Pure Appl. Algebra 169 (2002), no. 2-3, 175–199. MR 1897342, DOI https://doi.org/10.1016/S0022-4049%2801%2900071-8
- K. Erdmann and A. Henke, On Schur algebras, Ringel duality and symmetric groups, J. Pure Appl. Algebra 169 (2002), no. 2-3, 175–199. MR 1897342, DOI https://doi.org/10.1016/S0022-4049%2801%2900071-8
- Frederick M. Goodman and Hans Wenzl, The Temperley-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), no. 2, 307–334. MR 1242201
- Pierre Ille and Robert Woodrow, Fractal graphs, J. Graph Theory 91 (2019), no. 1, 53–72. MR 3932935, DOI https://doi.org/10.1002/jgt.22420
- Lars Thorge Jensen and Geordie Williamson, The $p$-canonical basis for Hecke algebras, Categorification and higher representation theory, Contemp. Math., vol. 683, Amer. Math. Soc., Providence, RI, 2017, pp. 333–361. MR 3611719, DOI https://doi.org/10.1090/conm/683
- Louis H. Kauffman and Sóstenes L. Lins, Temperley-Lieb recoupling theory and invariants of $3$-manifolds, Annals of Mathematics Studies, vol. 134, Princeton University Press, Princeton, NJ, 1994. MR 1280463
- Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz, and Daniel Tubbenhauer, Trihedral Soergel bimodules, Fund. Math. 248 (2020), no. 3, 219–300. MR 4046957, DOI https://doi.org/10.4064/fm566-3-2019
- Vanessa Miemietz and Will Turner, Koszul dual $2$-functors and extension algebras of simple modules for $GL_2$, Selecta Math. (N.S.) 21 (2015), no. 2, 605–648. MR 3338684, DOI https://doi.org/10.1007/s00029-014-0164-8
- Vanessa Miemietz and Will Turner, Rational representations of ${\rm GL}_2$, Glasg. Math. J. 53 (2011), no. 2, 257–275. MR 2783156, DOI https://doi.org/10.1017/S0017089510000686
- Vanessa Miemietz and Will Turner, The Weyl extension algebra of $GL_2(\overline {\Bbb {F}}_p)$, Adv. Math. 246 (2013), 144–197. MR 3091804, DOI https://doi.org/10.1016/j.aim.2013.07.003
- Simon Riche and Geordie Williamson, Tilting modules and the $p$-canonical basis, Astérisque 397 (2018), ix+184 (English, with English and French summaries). MR 3805034
- Daniel Tubbenhauer, Pedro Vaz, and Paul Wedrich, Super $q$-Howe duality and web categories, Algebr. Geom. Topol. 17 (2017), no. 6, 3703–3749. MR 3709658, DOI https://doi.org/10.2140/agt.2017.17.3703
- Geordie Williamson, Algebraic representations and constructible sheaves, Jpn. J. Math. 12 (2017), no. 2, 211–259. MR 3694932, DOI https://doi.org/10.1007/s11537-017-1646-1
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 20G05, 20C20, 16D90, 17B10, 20G40
Retrieve articles in all journals with MSC (2020): 20G05, 20C20, 16D90, 17B10, 20G40
Additional Information
Daniel Tubbenhauer
Affiliation:
Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, Campus Irchel, Office Y27J32, CH-8057 Zürich, Switzerland
MR Author ID:
1067860
ORCID:
0000-0001-7265-5047
Email:
daniel.tubbenhauer@math.uzh.ch
Paul Wedrich
Affiliation:
Mathematical Sciences Institute, The Australian National University, Hanna Neumann Building, Canberra ACT 2601, Australia
MR Author ID:
1152159
ORCID:
0000-0002-2517-7924
Email:
p.wedrich@gmail.com
Keywords:
Modular representation theory,
tilting modules,
diagrammatic algebra,
generators and relations,
Temperley–Lieb,
positive characteristic.
Received by editor(s):
February 11, 2020
Received by editor(s) in revised form:
November 25, 2020
Published electronically:
June 3, 2021
Additional Notes:
The second author was supported by Australian Research Council grants ‘Braid groups and higher representation theory’ DP140103821 and ‘Low dimensional categories’ DP160103479.
Article copyright:
© Copyright 2021
American Mathematical Society