On unitary representations of algebraic groups over local fields
HTML articles powered by AMS MathViewer
- by Bachir Bekka and Siegfried Echterhoff
- Represent. Theory 25 (2021), 508-526
- DOI: https://doi.org/10.1090/ert/574
- Published electronically: June 10, 2021
Abstract:
Let $\mathbf {G}$ be an algebraic group over a local field $\mathbf {k}$ of characteristic zero. We show that the locally compact group $\mathbf {G}(\mathbf {k})$ consisting of the $\mathbf {k}$-rational points of $\mathbf {G}$ is of type I. Moreover, we complete Lipsman’s characterization of the groups $\mathbf {G}$ for which every irreducible unitary representation of $\mathbf {G}(\mathbf {k})$ is a CCR representation and show at the same time that such groups belong to the family of trace class groups, recently studied by Deitmar and van Dijk.References
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- I. N. Bernšteĭn, All reductive ${\mathfrak {p}}$-adic groups are of type I, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 3–6 (Russian). MR 0348045
- I. N. Bernšteĭn, Draft of: Representations of $p$-adic groups. (1992), available at http://www.math.tau.ac.il/~bernstei/. Notes taken by E. Rumelhart.
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111–164 (French). MR 181643, DOI 10.1007/BF02566948
- François Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes $\wp$-adiques, Bull. Soc. Math. France 89 (1961), 43–75 (French). MR 140941, DOI 10.24033/bsmf.1559
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- Anton Deitmar and Gerrit van Dijk, Trace class groups, J. Lie Theory 26 (2016), no. 1, 269–291. MR 3391353, DOI 10.1007/s40593-015-0088-2
- J. Dixmier, Sur les représentations unitaires des groupes de Lie algébriques, Ann. Inst. Fourier (Grenoble) 7 (1957), 315–328 (French). MR 99380, DOI 10.5802/aif.73
- Jacques Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. V, Bull. Soc. Math. France 87 (1959), 65–79 (French). MR 115097, DOI 10.24033/bsmf.1514
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Jacques Dixmier and Paul Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), no. 4, 307–330 (French, with English summary). MR 517765
- Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), no. 3-4, 153–213 (French). MR 688348, DOI 10.1007/BF02392353
- Uriya A. First and Thomas Rüd, On uniform admissibility of unitary and smooth representations, Arch. Math. (Basel) 112 (2019), no. 2, 169–179. MR 3908835, DOI 10.1007/s00013-018-1257-y
- J. Glimm, Type I $C^{\ast }$-algebras, Ann. of Math. (2) 73 (1961), 572–612., DOI 10.2307/1970319
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Harmonic analysis on reductive $p$-adic groups, Lecture Notes in Mathematics, Vol. 162, Springer-Verlag, Berlin-New York, 1970. Notes by G. van Dijk. MR 0414797, DOI 10.1007/BFb0061269
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- Ronald L. Lipsman, The $\textrm {CCR}$ property for algebraic groups, Amer. J. Math. 97 (1975), no. 3, 741–752. MR 390123, DOI 10.2307/2373774
- George W. Mackey, Les ensembles boréliens et les extensions des groupes, J. Math. Pures Appl. (9) 36 (1957), 171–178 (French). MR 89998
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146–182. MR 181701, DOI 10.2307/1970567
- Lajos Pukánszky, Characters of connected Lie groups, Mathematical Surveys and Monographs, vol. 71, American Mathematical Society, Providence, RI, 1999. With a preface by J. Dixmier and M. Duflo. MR 1707323, DOI 10.1090/surv/071
- David Renard, Représentations des groupes réductifs $p$-adiques, Cours Spécialisés [Specialized Courses], vol. 17, Société Mathématique de France, Paris, 2010 (French). MR 2567785
- I. Schochetman, Topology and the duals of certain locally compact groups, Trans. Amer. Math. Soc. 150 (1970), 477–489., DOI 10.2307/1995530
- Elmar Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I, Invent. Math. 6 (1968), 190–196 (German). MR 248288, DOI 10.1007/BF01404824
- Gerrit van Dijk, Trace class groups: the case of semi-direct products, J. Lie Theory 29 (2019), no. 2, 375–390. MR 3915545
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Bachir Bekka
- Affiliation: Université Rennes, CNRS, IRMAR–UMR 6625, Campus Beaulieu, F-35042 Rennes Cedex, France
- MR Author ID: 33840
- Email: bachir.bekka@univ-rennes1.fr
- Siegfried Echterhoff
- Affiliation: Mathematisches Institut,Universität Münster, Einsteinstraße 62,, D-48149 Münster, Germany
- MR Author ID: 266728
- ORCID: 0000-0001-9443-6451
- Email: echters@uni-muenster.de
- Received by editor(s): March 23, 2020
- Published electronically: June 10, 2021
- Additional Notes: The first author acknowledges the support by the ANR (French Agence Nationale de la Recherche) through the projects Labex Lebesgue (ANR-11-LABX-0020-01) and GAMME (ANR-14-CE25-0004). This research was also funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics–Geometry–Structure
- © Copyright 2021 by the authors
- Journal: Represent. Theory 25 (2021), 508-526
- MSC (2020): Primary 22D10, 22D25, 22E50, 20G05
- DOI: https://doi.org/10.1090/ert/574
- MathSciNet review: 4273170