Parametrization, structure and Bruhat order of certain spherical quotients
HTML articles powered by AMS MathViewer
- by Pierre-Emmanuel Chaput, Lucas Fresse and Thomas Gobet
- Represent. Theory 25 (2021), 935-974
- DOI: https://doi.org/10.1090/ert/584
- Published electronically: October 21, 2021
- PDF | Request permission
Abstract:
Let $G$ be a reductive algebraic group and let $Z$ be the stabilizer of a nilpotent element $e$ of the Lie algebra of $G$. We consider the action of $Z$ on the flag variety of $G$, and we focus on the case where this action has a finite number of orbits (i.e., $Z$ is a spherical subgroup). This holds for instance if $e$ has height $2$. In this case we give a parametrization of the $Z$-orbits and we show that each $Z$-orbit has a structure of algebraic affine bundle. In particular, in type $A$, we deduce that each orbit has a natural cell decomposition. In the aim to study the (strong) Bruhat order of the orbits, we define an abstract partial order on certain quotients associated to a Coxeter system. In type $A$, we show that the Bruhat order of the $Z$-orbits can be described in this way.References
- M. Bender and N. Perrin, Singularities of closures of $B$-conjugacy classes of nilpotent elements of height 2, Transform. Groups 24 (2019), no. 3, 741–768. MR 3989689, DOI 10.1007/s00031-018-9505-6
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, DOI 10.2307/1970915
- Anders Björner and Francesco Brenti, An improved tableau criterion for Bruhat order, Electron. J. Combin. 3 (1996), no. 1, Research Paper 22, approx. 5. MR 1399399, DOI 10.37236/1246
- Magdalena Boos, Giovanni Cerulli Irelli, and Francesco Esposito, Parabolic orbits of 2-nilpotent elements for classical groups, J. Lie Theory 29 (2019), no. 4, 969–996. MR 4000994
- Magdalena Boos and Markus Reineke, $B$-orbits of 2-nilpotent matrices and generalizations, Highlights in Lie algebraic methods, Progr. Math., vol. 295, Birkhäuser/Springer, New York, 2012, pp. 147–166. MR 2866850, DOI 10.1007/978-0-8176-8274-3_{6}
- Paolo Bravi and Stéphanie Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 641–681 (English, with English and French summaries). MR 2667789, DOI 10.5802/aif.2535
- M. Brion, Rational smoothness and fixed points of torus actions, Transform. Groups 4 (1999), no. 2-3, 127–156. Dedicated to the memory of Claude Chevalley. MR 1712861, DOI 10.1007/BF01237356
- Michel Brion, On orbit closures of spherical subgroups in flag varieties, Comment. Math. Helv. 76 (2001), no. 2, 263–299. MR 1839347, DOI 10.1007/PL00000379
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Vinay V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), no. 2, 187–198. MR 435249, DOI 10.1007/BF01390109
- Matthew Dyer, On the “Bruhat graph” of a Coxeter system, Compositio Math. 78 (1991), no. 2, 185–191. MR 1104786
- Jacopo Gandini, Pierluigi Möseneder Frajria, and Paolo Papi, Spherical nilpotent orbits and abelian subalgebras in isotropy representations, J. Lond. Math. Soc. (2) 95 (2017), no. 1, 323–352. MR 3653095, DOI 10.1112/jlms.12022
- Jacopo Gandini, Pierluigi Möseneder Frajria, and Paolo Papi, Nilpotent orbits of height 2 and involutions in the affine Weyl group, Indag. Math. (N.S.) 31 (2020), no. 4, 568–594. MR 4126755, DOI 10.1016/j.indag.2020.04.006
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- Victor G. Kac, Infinite-dimensional Lie algebras, Progress in Mathematics, vol. 44, Birkhäuser Boston, Inc., Boston, MA, 1983. An introduction. MR 739850, DOI 10.1007/978-1-4757-1382-4
- Bertram Kostant, The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group, Mosc. Math. J. 12 (2012), no. 3, 605–620, 669 (English, with English and Russian summaries). MR 3024825, DOI 10.17323/1609-4514-2012-12-3-605-620
- B. Mühlherr, Coxeter groups in Coxeter groups, Finite geometry and combinatorics (Deinze, 1992) London Math. Soc. Lecture Note Ser., vol. 191, Cambridge Univ. Press, Cambridge, 1993, pp. 277–287. MR 1256283, DOI 10.1017/CBO9780511526336.027
- Dmitrii I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), no. 3-4, 223–237. MR 1277527, DOI 10.1007/BF02567611
- Dmitri I. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 5, 1453–1476 (English, with English and French summaries). MR 1723823, DOI 10.5802/aif.1726
- R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), no. 1-3, 389–436. MR 1066573, DOI 10.1007/BF00147354
- R. W. Richardson and T. A. Springer, Combinatorics and geometry of $K$-orbits on the flag manifold, Linear algebraic groups and their representations (Los Angeles, CA, 1992) Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 109–142. MR 1247501, DOI 10.1090/conm/153/01309
- Brian David Rothbach, Borel orbits of X2 = 0 in gl(n), ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–University of California, Berkeley. MR 2714006
Bibliographic Information
- Pierre-Emmanuel Chaput
- Affiliation: Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy F-54506, France
- MR Author ID: 697366
- Email: pierre-emmanuel.chaput@univ-lorraine.fr
- Lucas Fresse
- Affiliation: Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy F-54506, France
- MR Author ID: 875745
- Email: lucas.fresse@univ-lorraine.fr
- Thomas Gobet
- Affiliation: Institut Denis Poisson, CNRS UMR 7350, Faculté des Sciences et Techniques, Université de Tours, Parc de Grandmont, 37200 Tours, France
- MR Author ID: 1076592
- Email: thomas.gobet@lmpt.univ-tours.fr
- Received by editor(s): September 18, 2020
- Received by editor(s) in revised form: June 2, 2021
- Published electronically: October 21, 2021
- Additional Notes: The first two authors were supported in part by the ANR project GeoLie ANR-15-CE40-0012. The third author was partially supported by the same project and by the ARC project DP170101579.
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 935-974
- MSC (2020): Primary 20G05, 17B08
- DOI: https://doi.org/10.1090/ert/584
- MathSciNet review: 4329194