Inverse Satake isomorphism and change of weight
HTML articles powered by AMS MathViewer
- by N. Abe, F. Herzig and M. F. Vignéras
- Represent. Theory 26 (2022), 264-324
- DOI: https://doi.org/10.1090/ert/594
- Published electronically: March 21, 2022
- PDF | Request permission
Abstract:
Let $G$ be any connected reductive $p$-adic group. Let $K\subset G$ be any special parahoric subgroup and $V,V’$ be any two irreducible smooth $\overline {\mathbb {F}_p}[K]$-modules. The main goal of this article is to compute the image of the Hecke bimodule $\operatorname {End}_{\overline {\mathbb {F}_p}[K]}(c-Ind_K^G V, c-Ind_K^G V’)$ by the generalized Satake transform and to give an explicit formula for its inverse, using the pro-$p$ Iwahori Hecke algebra of $G$. This immediately implies the “change of weight theorem” in the proof of the classification of mod $p$ irreducible admissible representations of $G$ in terms of supersingular ones. A simpler proof of the change of weight theorem, not using the pro-$p$ Iwahori Hecke algebra or the Lusztig-Kato formula, is given when $G$ is split and in the appendix when $G$ is quasi-split, for almost all $K$.References
- Noriyuki Abe, On a classification of irreducible admissible modulo $p$ representations of a $p$-adic split reductive group, Compos. Math. 149 (2013), no. 12, 2139–2168. MR 3143708, DOI 10.1112/S0010437X13007379
- Noriyuki Abe, Modulo $p$ parabolic induction of pro-$p$-Iwahori Hecke algebra, J. Reine Angew. Math. 749 (2019), 1–64. MR 3935898, DOI 10.1515/crelle-2016-0043
- N. Abe, G. Henniart, F. Herzig, and M.-F. Vignéras, A classification of irreducible admissible $\textrm {mod}\, p$ representations of $p$-adic reductive groups, J. Amer. Math. Soc. 30 (2017), no. 2, 495–559. MR 3600042, DOI 10.1090/jams/862
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756, DOI 10.1017/CBO9780511542763
- R. W. Carter and G. Lusztig, Modular representations of finite groups of Lie type, Proc. London Math. Soc. (3) 32 (1976), no. 2, 347–384. MR 396731, DOI 10.1112/plms/s3-32.2.347
- Jean-Louis Colliot-Thélène, Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math. 618 (2008), 77–133 (French). MR 2404747, DOI 10.1515/CRELLE.2008.034
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Florian Herzig, The weight in a Serre-type conjecture for tame $n$-dimensional Galois representations, Duke Math. J. 149 (2009), no. 1, 37–116. MR 2541127, DOI 10.1215/00127094-2009-036
- Florian Herzig, The classification of irreducible admissible mod $p$ representations of a $p$-adic $\textrm {GL}_n$, Invent. Math. 186 (2011), no. 2, 373–434. MR 2845621, DOI 10.1007/s00222-011-0321-z
- Florian Herzig, A Satake isomorphism in characteristic $p$, Compos. Math. 147 (2011), no. 1, 263–283. MR 2771132, DOI 10.1112/S0010437X10004951
- G. Haines and M. Rapoport, On parahoric subgroups. Appendix to Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 188–198.
- Thomas J. Haines and Sean Rostami, The Satake isomorphism for special maximal parahoric Hecke algebras, Represent. Theory 14 (2010), 264–284. MR 2602034, DOI 10.1090/S1088-4165-10-00370-5
- Guy Henniart and Marie-France Vigneras, Comparison of compact induction with parabolic induction, Pacific J. Math. 260 (2012), no. 2, 457–495. MR 3001801, DOI 10.2140/pjm.2012.260.457
- Guy Henniart and Marie-France Vignéras, A Satake isomorphism for representations modulo $p$ of reductive groups over local fields, J. Reine Angew. Math. 701 (2015), 33–75. MR 3331726, DOI 10.1515/crelle-2013-0021
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- J. Milne, Algebraic groups, Course notes v.2.00, http://www.jmilne.org/math/CourseNotes/ala.html.
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Rachel Ollivier, Compatibility between Satake and Bernstein isomorphisms in characteristic $p$, Algebra Number Theory 8 (2014), no. 5, 1071–1111. MR 3263136, DOI 10.2140/ant.2014.8.1071
- Rachel Ollivier, An inverse Satake isomorphism in characteristic $p$, Selecta Math. (N.S.) 21 (2015), no. 3, 727–761. MR 3366919, DOI 10.1007/s00029-014-0157-7
- Michael Rapoport, A guide to the reduction modulo $p$ of Shimura varieties, Astérisque 298 (2005), 271–318 (English, with English and French summaries). Automorphic forms. I. MR 2141705
- T. A. Springer, Linear algebraic groups, 2nd ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009. MR 2458469
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62. MR 0224710
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- Marie-France Vignéras, The pro-$p$ Iwahori-Hecke algebra of a reductive $p$-adic group IV (Levi subgroup and central extension), preprint, available at https://webusers.imj-prg.fr/~marie-france.vigneras/recent.html.
- Marie-France Vignéras, Algèbres de Hecke affines génériques, Represent. Theory 10 (2006), 1–20 (French, with French summary). MR 2192484, DOI 10.1090/S1088-4165-06-00185-3
- Marie-France Vignéras, The pro-$p$ Iwahori Hecke algebra of a reductive $p$-adic group, V (parabolic induction), Pacific J. Math. 279 (2015), no. 1-2, 499–529. MR 3437789, DOI 10.2140/pjm.2015.279.499
- Marie-France Vigneras, The pro-$p$-Iwahori Hecke algebra of a reductive $p$-adic group I, Compos. Math. 152 (2016), no. 4, 693–753. MR 3484112, DOI 10.1112/S0010437X15007666
Bibliographic Information
- N. Abe
- Affiliation: Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
- MR Author ID: 858099
- Email: abenori@ms.u-tokyo.ac.jp
- F. Herzig
- Affiliation: Department of Mathematics, University of Toronto, 40 St. George Street, Room 6290, Toronto, Ontario M5S 2E4, Canada
- MR Author ID: 876324
- Email: herzig@math.toronto.edu
- M. F. Vignéras
- Affiliation: Institut de Mathématiques de Jussieu, 4 place Jussieu, 75005 Paris, France
- ORCID: 0000-0003-4442-3809
- Email: vigneras@math.jussieu.fr
- Received by editor(s): September 15, 2018
- Received by editor(s) in revised form: September 24, 2021
- Published electronically: March 21, 2022
- Additional Notes: The first-named author was supported by JSPS KAKENHI Grant Number 18H01107. The second-named author was partially supported by a Sloan Fellowship, a Simons Fellowship, and an NSERC grant
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 264-324
- MSC (2020): Primary 20C08; Secondary 11F70
- DOI: https://doi.org/10.1090/ert/594
- MathSciNet review: 4397148