Base change and triple product $L$-series
HTML articles powered by AMS MathViewer
- by Ming-Lun Hsieh and Shunsuke Yamana PDF
- Represent. Theory 26 (2022), 402-431 Request permission
Abstract:
Let $\pi _i$ be an irreducible cuspidal automorphic representation of $\mathrm {GL}_2$ with central character $\omega _i$. When $\omega _1\omega _2\omega _3$ is trivial, Atsushi Ichino proved a formula for the central value $L(\frac {1}{2}, \pi _1\times \pi _2\times \pi _3)$ of the triple product $L$-series in terms of global trilinear forms. We will extend this formula to the case when $\omega _1\omega _2\omega _3$ is a quadratic character, giving a non-vanishing criterion of a local trilinear form in terms of the central value of the gamma factor.References
- Shih-Yu Chen, Gamma factors for the Asai cube representation, Math. Z. 297 (2021), no.ย 1-2, 747โ773. MR 4204712, DOI 10.1007/s00209-020-02531-7
- Shih-Yu Chen, Yao Cheng, and Isao Ishikawa, Gamma factors for the Asai representation of $\textrm {GL}_2$, J. Number Theory 209 (2020), 83โ146. MR 4053061, DOI 10.1016/j.jnt.2019.08.008
- Yuval Z. Flicker and Dmitrii Zinoviev, On poles of twisted tensor $L$-functions, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no.ย 6, 114โ116. MR 1344660
- Wee Teck Gan and Atsushi Ichino, On endoscopy and the refined Gross-Prasad conjecture for $(\rm SO_5,SO_4)$, J. Inst. Math. Jussieu 10 (2011), no.ย 2, 235โ324. MR 2787690, DOI 10.1017/S1474748010000198
- Wee Teck Gan, Yannan Qiu, and Shuichiro Takeda, The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math. 198 (2014), no.ย 3, 739โ831. MR 3279536, DOI 10.1007/s00222-014-0509-0
- Michael Harris and Stephen S. Kudla, The central critical value of a triple product $L$-function, Ann. of Math. (2) 133 (1991), no.ย 3, 605โ672. MR 1109355, DOI 10.2307/2944321
- Atsushi Ichino, Trilinear forms and the central values of triple product $L$-functions, Duke Math. J. 145 (2008), no.ย 2, 281โ307. MR 2449948, DOI 10.1215/00127094-2008-052
- Tamotsu Ikeda, On the functional equations of the triple $L$-functions, J. Math. Kyoto Univ. 29 (1989), no.ย 2, 175โ219. MR 1015866, DOI 10.1215/kjm/1250520261
- Tamotsu Ikeda, On the location of poles of the triple $L$-functions, Compositio Math. 83 (1992), no.ย 2, 187โ237. MR 1174424
- Tamotsu Ikeda, On the functional equation of the Siegel series, J. Number Theory 172 (2017), 44โ62. MR 3573143, DOI 10.1016/j.jnt.2016.08.002
- Stephen S. Kudla and Stephen Rallis, Ramified degenerate principal series representations for $\textrm {Sp}(n)$, Israel J. Math. 78 (1992), no.ย 2-3, 209โ256. MR 1194967, DOI 10.1007/BF02808058
- Stephen S. Kudla and Stephen Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140 (1994), no.ย 1, 1โ80. MR 1289491, DOI 10.2307/2118540
- Henry H. Kim and Freydoon Shahidi, Functorial products for $\textrm {GL}_2\times \textrm {GL}_3$ and the symmetric cube for $\textrm {GL}_2$, Ann. of Math. (2) 155 (2002), no.ย 3, 837โ893. With an appendix by Colin J. Bushnell and Guy Henniart. MR 1923967, DOI 10.2307/3062134
- Shin-ichi Kato and Keiji Takano, Square integrability of representations on $p$-adic symmetric spaces, J. Funct. Anal. 258 (2010), no.ย 5, 1427โ1451. MR 2566307, DOI 10.1016/j.jfa.2009.10.026
- Hengfei Lu, A new proof to the period problems of $\textrm {GL}(2)$, J. Number Theory 180 (2017), 1โ25. MR 3679785, DOI 10.1016/j.jnt.2017.03.010
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Dipendra Prasad, Trilinear forms for representations of $\textrm {GL}(2)$ and local $\epsilon$-factors, Compositio Math. 75 (1990), no.ย 1, 1โ46. MR 1059954
- I. Piatetski-Shapiro and Stephen Rallis, Rankin triple $L$ functions, Compositio Math. 64 (1987), no.ย 1, 31โ115. MR 911357
- Dinakar Ramakrishnan, Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $\textrm {SL}(2)$, Ann. of Math. (2) 152 (2000), no.ย 1, 45โ111. MR 1792292, DOI 10.2307/2661379
- Hideo Shimizu, Theta series and automorphic forms on $\textrm {GL}_{2}$, J. Math. Soc. Japan 24 (1972), 638โ683. MR 333081, DOI 10.2969/jmsj/02440638
- Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, Mathematical Surveys and Monographs, vol. 109, American Mathematical Society, Providence, RI, 2004. MR 2027702, DOI 10.1090/surv/109
- J.-L. Waldspurger, Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symรฉtrie, Compositio Math. 54 (1985), no.ย 2, 173โ242 (French). MR 783511
- Andrรฉ Weil, Sur la formule de Siegel dans la thรฉorie des groupes classiques, Acta Math. 113 (1965), 1โ87 (French). MR 223373, DOI 10.1007/BF02391774
- Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier formula on Shimura curves, Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, NJ, 2013. MR 3237437
- Wei Zhang, Automorphic period and the central value of Rankin-Selberg L-function, J. Amer. Math. Soc. 27 (2014), no.ย 2, 541โ612. MR 3164988, DOI 10.1090/S0894-0347-2014-00784-0
Additional Information
- Ming-Lun Hsieh
- Affiliation: Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan
- MR Author ID: 904717
- ORCID: 0000-0002-7329-5167
- Email: mlhsieh@math.sinica.edu.tw
- Shunsuke Yamana
- Affiliation: Osaka City University, Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- MR Author ID: 871756
- Email: yamana@sci.osaka-cu.ac.jp
- Received by editor(s): March 17, 2020
- Received by editor(s) in revised form: March 23, 2021
- Published electronically: March 25, 2022
- Additional Notes: The first author was partially supported by a MOST grants 108-2628-M-001-009-MY4 and 110-2628-M-001-004-. The second author was partially supported by JSPS Grant-in-Aid for Scientific Research (C)18K03210 and (B)19H01778. This work was partially supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).
The second author is the corresponding author - © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 402-431
- MSC (2020): Primary 11F67, 11F70, 11F27
- DOI: https://doi.org/10.1090/ert/602
- MathSciNet review: 4400091