Branching of metaplectic representation of $Sp(2, \mathbb R)$ under its principal $SL(2, \mathbb R)$-subgroup
HTML articles powered by AMS MathViewer
- by GenKai Zhang
- Represent. Theory 26 (2022), 498-514
- DOI: https://doi.org/10.1090/ert/609
- Published electronically: April 25, 2022
- PDF | Request permission
Abstract:
We study the branching problem of the metaplectic representation of $Sp(2, \mathbb R)$ under its principle subgroup $SL(2, \mathbb R)$. We find the complete decomposition.References
- Marc Burger, Alessandra Iozzi, and Anna Wienhard, Tight homomorphisms and Hermitian symmetric spaces, Geom. Funct. Anal. 19 (2009), no. 3, 678–721. MR 2563767, DOI 10.1007/s00039-009-0020-8
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Michel Duflo, Esther Galina, and Jorge A. Vargas, Square integrable representations of reductive Lie groups with admissible restriction to $\textrm {SL}_2(\Bbb R)$, J. Lie Theory 27 (2017), no. 4, 1033–1056. MR 3646030
- Jacques Faraut and Adam Korányi, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1446489
- J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), no. 1, 64–89. MR 1033914, DOI 10.1016/0022-1236(90)90119-6
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- J. Frahm, Conformally invariant differential operators on Heisenberg groups and minimal representations, Preprint, arXiv:2012.05952v1, 2020.
- J. Frahm, C. Weiske, and G. Zhang, Principal series for Hermitian Lie groups induced from Heisenberg parabolic subgroups and intertwining operators, in preparation.
- Roger Howe and Eng-Chye Tan, Nonabelian harmonic analysis, Universitext, Springer-Verlag, New York, 1992. Applications of $\textrm {SL}(2,\textbf {R})$. MR 1151617, DOI 10.1007/978-1-4613-9200-2
- Roger Howe, On some results of Strichartz and Rallis and Schiffman, J. Functional Analysis 32 (1979), no. 3, 297–303. MR 538856, DOI 10.1016/0022-1236(79)90041-7
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Toshiyuki Kobayashi, Restrictions of unitary representations of real reductive groups, Lie theory, Progr. Math., vol. 229, Birkhäuser Boston, Boston, MA, 2005, pp. 139–207. MR 2126642, DOI 10.1007/0-8176-4430-X_{3}
- Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw, Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. With a foreword by Tom H. Koornwinder. MR 2656096, DOI 10.1007/978-3-642-05014-5
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
- Ottmar Loos, Jordan pairs, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-New York, 1975. MR 0444721, DOI 10.1007/BFb0080843
- Bent Ørsted and Jorge A. Vargas, Branching problems for semisimple Lie groups and reproducing kernels, C. R. Math. Acad. Sci. Paris 357 (2019), no. 9, 697–707 (English, with English and French summaries). MR 4018081, DOI 10.1016/j.crma.2019.09.004
- Joe Repka, Tensor products of unitary representations of $\textrm {SL}_{2}(\textbf {R})$, Amer. J. Math. 100 (1978), no. 4, 747–774. MR 509073, DOI 10.2307/2373909
- Henrik Schlichtkrull, One-dimensional $K$-types in finite-dimensional representations of semisimple Lie groups: a generalization of Helgason’s theorem, Math. Scand. 54 (1984), no. 2, 279–294. MR 757468, DOI 10.7146/math.scand.a-12059
- Genkai Zhang, Branching coefficients of holomorphic representations and Segal-Bargmann transform, J. Funct. Anal. 195 (2002), no. 2, 306–349. MR 1940358, DOI 10.1006/jfan.2002.3957
- Genkai Zhang, Berezin transform on real bounded symmetric domains, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3769–3787. MR 1837258, DOI 10.1090/S0002-9947-01-02832-X
- Genkai Zhang, Tensor products of minimal holomorphic representations, Represent. Theory 5 (2001), 164–190. MR 1835004, DOI 10.1090/S1088-4165-01-00103-0
- Genkai Zhang, Principal series of Hermitian Lie groups induced from Heisenberg parabolic subgroups, J. Funct. Anal. 282 (2022), no. 8, Paper No. 109399, 39. MR 4377991, DOI 10.1016/j.jfa.2022.109399
Bibliographic Information
- GenKai Zhang
- Affiliation: Mathematical Sciences, Chalmers University of Technology and Mathematical Sciences, Göteborg University, SE-412 96 Göteborg, Sweden
- MR Author ID: 230134
- ORCID: 0000-0003-1147-3391
- Email: genkai@chalmers.se
- Received by editor(s): September 3, 2021
- Received by editor(s) in revised form: December 12, 2021, and February 7, 2022
- Published electronically: April 25, 2022
- Additional Notes: The research for this work was supported by the Swedish Science Council (VR)
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 498-514
- MSC (2020): Primary 22E45, 43A80, 43A90
- DOI: https://doi.org/10.1090/ert/609
- MathSciNet review: 4412276