Universal K-matrices for quantum Kac-Moody algebras
HTML articles powered by AMS MathViewer
- by Andrea Appel and Bart Vlaar
- Represent. Theory 26 (2022), 764-824
- DOI: https://doi.org/10.1090/ert/623
- Published electronically: July 19, 2022
- PDF | Request permission
Abstract:
We introduce the notion of a cylindrical bialgebra, which is a quasitriangular bialgebra $H$ endowed with a universal K-matrix, i.e., a universal solution of a generalized reflection equation, yielding an action of cylindrical braid groups on tensor products of its representations. We prove that new examples of such universal K-matrices arise from quantum symmetric pairs of Kac-Moody type and depend upon the choice of a pair of generalized Satake diagrams. In finite type, this yields a refinement of a result obtained by Balagović and Kolb, producing a family of non-equivalent solutions interpolating between the quasi-K-matrix originally due to Bao and Wang and the full universal K-matrix. Finally, we prove that this construction yields formal solutions of the generalized reflection equation with a spectral parameter in the case of finite-dimensional representations over the quantum affine algebra $U_qL\mathfrak {sl}_{2}$.References
- Andrea Appel and Valerio Toledano Laredo, Monodromy of the Casimir connection of a symmetrisable Kac-Moody algebra, Preprint, arXiv:1512.03041, 2015.
- Andrea Appel and Valerio Toledano Laredo, A 2-categorical extension of Etingof-Kazhdan quantisation, Selecta Math. (N.S.) 24 (2018), no. 4, 3529–3617. MR 3848027, DOI 10.1007/s00029-017-0381-z
- Andrea Appel and Valerio Toledano Laredo, Uniqueness of Coxeter structures on Kac-Moody algebras, Adv. Math. 347 (2019), 1–104. MR 3915314, DOI 10.1016/j.aim.2019.02.022
- Andrea Appel and Valerio Toledano Laredo, Coxeter categories and quantum groups, Selecta Math. (N.S.) 25 (2019), no. 3, Paper No. 44, 97. MR 3984102, DOI 10.1007/s00029-019-0490-y
- Andrea Appel and Valerio Toledano Laredo, Pure braid group actions on category O, in preparation, 2022.
- Andrea Appel and Bart Vlaar, Trigonometric K-matrices for finite-dimensional representations of quantum affine algebras, Preprint, arXiv:2203.16503, 2022.
- Valérie Back-Valente, Nicole Bardy-Panse, Hechmi Ben Messaoud, and Guy Rousseau, Formes presque-déployées des algèbres de Kac-Moody: classification et racines relatives, J. Algebra 171 (1995), no. 1, 43–96 (French). MR 1314093, DOI 10.1006/jabr.1995.1004
- Pascal Baseilhac and Samuel Belliard, Non-Abelian symmetries of the half-infinite XXZ spin chain, Nuclear Phys. B 916 (2017), 373–385. MR 3611411, DOI 10.1016/j.nuclphysb.2017.01.012
- Martina Balagović and Stefan Kolb, The bar involution for quantum symmetric pairs, Represent. Theory 19 (2015), 186–210. MR 3414769, DOI 10.1090/ert/469
- Martina Balagović and Stefan Kolb, Universal K-matrix for quantum symmetric pairs, J. Reine Angew. Math. 747 (2019), 299–353. MR 3905136, DOI 10.1515/crelle-2016-0012
- E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57–61 (German). MR 293615, DOI 10.1007/BF01389827
- Egbert Brieskorn and Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245–271 (German). MR 323910, DOI 10.1007/BF01406235
- Adrien Brochier, A Kohno-Drinfeld theorem for the monodromy of cyclotomic KZ connections, Comm. Math. Phys. 311 (2012), no. 1, 55–96. MR 2892463, DOI 10.1007/s00220-012-1424-0
- Pascal Baseilhac and Zengo Tsuboi, Asymptotic representations of augmented $q$-Onsager algebra and boundary $K$-operators related to Baxter Q-operators, Nuclear Phys. B 929 (2018), 397–437. MR 3771977, DOI 10.1016/j.nuclphysb.2018.02.017
- Huanchen Bao and Weiqiang Wang, A new approach to Kazhdan-Lusztig theory of type $B$ via quantum symmetric pairs, Astérisque 402 (2018), vii+134 (English, with English and French summaries). MR 3864017
- Huanchen Bao and Weiqiang Wang, Canonical bases arising from quantum symmetric pairs of Kac-Moody type, Compos. Math. 157 (2021), no. 7, 1507–1537. MR 4277109, DOI 10.1112/S0010437X2100734X
- David Ben-Zvi, Adrien Brochier, and David Jordan, Quantum character varieties and braided module categories, Selecta Math. (N.S.) 24 (2018), no. 5, 4711–4748. MR 3874702, DOI 10.1007/s00029-018-0426-y
- I. V. Cherednik, Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz. 61 (1984), no. 1, 35–44 (Russian, with English summary). MR 774205
- Ivan Cherednik, Quantum Knizhnik-Zamolodchikov equations and affine root systems, Comm. Math. Phys. 150 (1992), no. 1, 109–136. MR 1188499, DOI 10.1007/BF02096568
- K. De Commer and M. Matassa, Quantum flag manifolds, quantum symmetric spaces and their associated universal $K$-matrices, Adv. Math. 366 (2020), 107029, 100. MR 4070299, DOI 10.1016/j.aim.2020.107029
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283. MR 1137064, DOI 10.1007/BF02102063
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1994 original. MR 1358358
- A. Davydov, Twisted automorphisms of Hopf algebras, Noncommutative structures in mathematics and physics, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2010, pp. 103–130. MR 2742734
- Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302 (French). MR 422673, DOI 10.1007/BF01406236
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- Gustav W. Delius and Alan George, Quantum affine reflection algebras of type $d^{(1)}_n$ and reflection matrices, Lett. Math. Phys. 62 (2002), no. 3, 211–217. MR 1958114, DOI 10.1023/A:1022259710600
- Liam Dobson and Stefan Kolb, Factorisation of quasi $K$-matrices for quantum symmetric pairs, Selecta Math. (N.S.) 25 (2019), no. 4, Paper No. 63, 55. MR 4021849, DOI 10.1007/s00029-019-0508-5
- J. Donin, P. P. Kulish, and A. I. Mudrov, On a universal solution to the reflection equation, Lett. Math. Phys. 63 (2003), no. 3, 179–194. MR 1992884, DOI 10.1023/A:1024438101617
- G. W. Delius and N. J. MacKay, Quantum group symmetry in sine-Gordon and affine Toda field theories on the half-line, Comm. Math. Phys. 233 (2003), no. 1, 173–190. MR 1958056, DOI 10.1007/s00220-002-0758-4
- Tammo tom Dieck, Categories of rooted cylinder ribbons and their representations, J. Reine Angew. Math. 494 (1998), 35–63. Dedicated to Martin Kneser on the occasion of his 70th birthday. MR 1604452, DOI 10.1515/crll.1998.010
- Tammo tom Dieck and Reinhard Häring-Oldenburg, Quantum groups and cylinder braiding, Forum Math. 10 (1998), no. 5, 619–639. MR 1644317, DOI 10.1515/form.10.5.619
- V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- V. G. Drinfel′d, Almost cocommutative Hopf algebras, Algebra i Analiz 1 (1989), no. 2, 30–46 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 2, 321–342. MR 1025154
- V. G. Drinfel′d, On some unsolved problems in quantum group theory, Quantum groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 1–8. MR 1183474, DOI 10.1007/BFb0101175
- Pavel Etingof, Private communication, 2022.
- Pavel I. Etingof and Adriano A. Moura, Elliptic central characters and blocks of finite dimensional representations of quantum affine algebras, Represent. Theory 7 (2003), 346–373. MR 2017062, DOI 10.1090/S1088-4165-03-00201-2
- Benjamin Enriquez, Quasi-reflection algebras and cyclotomic associators, Selecta Math. (N.S.) 13 (2007), no. 3, 391–463. MR 2383601, DOI 10.1007/s00029-007-0048-2
- Benjamin Enriquez, Half-balanced braided monoidal categories and Teichmüller groupoids in genus zero, Preprint, arXiv:1009.2652v2, 2010.
- Michael Ehrig and Catharina Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math. 331 (2018), 58–142. MR 3804673, DOI 10.1016/j.aim.2018.01.013
- I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), no. 1, 1–60. MR 1163666, DOI 10.1007/BF02099206
- A. M. Gavrilik and A. U. Klimyk, $q$-deformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys. 21 (1991), no. 3, 215–220. MR 1102131, DOI 10.1007/BF00420371
- Subir Ghoshal and Alexander Zamolodchikov, Boundary $S$ matrix and boundary state in two-dimensional integrable quantum field theory, Internat. J. Modern Phys. A 9 (1994), no. 21, 3841–3885. MR 1285930, DOI 10.1142/S0217751X94001552
- André Heck, Involutive automorphisms of root systems, J. Math. Soc. Japan 36 (1984), no. 4, 643–658. MR 759421, DOI 10.2969/jmsj/03640643
- Jens Carsten Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1359532, DOI 10.1090/gsm/006
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- V. N. Tolstoĭ and S. M. Khoroshkin, Universal $R$-matrix for quantized nontwisted affine Lie algebras, Funktsional. Anal. i Prilozhen. 26 (1992), no. 1, 85–88 (Russian); English transl., Funct. Anal. Appl. 26 (1992), no. 1, 69–71. MR 1163029, DOI 10.1007/BF01077085
- Stefan Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395–469. MR 3269184, DOI 10.1016/j.aim.2014.08.010
- Stefan Kolb, Braided module categories via quantum symmetric pairs, Proc. Lond. Math. Soc. (3) 121 (2020), no. 1, 1–31. MR 4048733, DOI 10.1112/plms.12303
- Stefan Kolb, The bar involution for quantum symmetric pairs–hidden in plain sight, Preprint, arXiv:2104.06120, 2021.
- A. N. Kirillov and N. Reshetikhin, $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), no. 2, 421–431. MR 1081014, DOI 10.1007/BF02097710
- P. P. Kulish and E. K. Sklyanin, Algebraic structures related to reflection equations, J. Phys. A 25 (1992), no. 22, 5963–5975. MR 1193836, DOI 10.1088/0305-4470/25/22/022
- D. Kazhdan and Y. Soibelman, Representations of quantum affine algebras, Selecta Math. (N.S.) 1 (1995), no. 3, 537–595. MR 1366624, DOI 10.1007/BF01589498
- Joel Kamnitzer and Peter Tingley, The crystal commutor and Drinfeld’s unitarized $R$-matrix, J. Algebraic Combin. 29 (2009), no. 3, 315–335. MR 2496310, DOI 10.1007/s10801-008-0137-0
- V. G. Kac and S. P. Wang, On automorphisms of Kac-Moody algebras and groups, Adv. Math. 92 (1992), no. 2, 129–195. MR 1155464, DOI 10.1016/0001-8708(92)90063-Q
- Stefan Kolb and Milen Yakimov, Symmetric pairs for Nichols algebras of diagonal type via star products, Adv. Math. 365 (2020), 107042, 69. MR 4065713, DOI 10.1016/j.aim.2020.107042
- Tom H. Koornwinder, Askey-Wilson polynomials as zonal spherical functions on the $\textrm {SU}(2)$ quantum group, SIAM J. Math. Anal. 24 (1993), no. 3, 795–813. MR 1215439, DOI 10.1137/0524049
- Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767. MR 1717368, DOI 10.1006/jabr.1999.8015
- Gail Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 117–165. MR 1913438
- Gail Letzter, Quantum symmetric pairs and their zonal spherical functions, Transform. Groups 8 (2003), no. 3, 261–292. MR 1996417, DOI 10.1007/s00031-003-0719-9
- S. Z. Levendorskiĭ and Ya. S. Soĭbel′man, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), no. 2, 241–254. MR 1120927, DOI 10.1016/0393-0440(90)90013-S
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Masatoshi Noumi, Mathijs S. Dijkhuizen, and Tetsuya Sugitani, Multivariable Askey-Wilson polynomials and quantum complex Grassmannians, Special functions, $q$-series and related topics (Toronto, ON, 1995) Fields Inst. Commun., vol. 14, Amer. Math. Soc., Providence, RI, 1997, pp. 167–177. MR 1448686, DOI 10.1090/s0002-9947-98-01971-0
- Masatoshi Noumi and Tetsuya Sugitani, Quantum symmetric spaces and related $q$-orthogonal polynomials, Group theoretical methods in physics (Toyonaka, 1994) World Sci. Publ., River Edge, NJ, 1995, pp. 28–40. MR 1413733
- David E. Radford, The structure of Hopf algebras with a projection, J. Algebra 92 (1985), no. 2, 322–347. MR 778452, DOI 10.1016/0021-8693(85)90124-3
- Vidas Regelskis and Bart Vlaar, Reflection matrices, coideal subalgebras and generalized Satake diagrams of affine type, Preprint, arXiv:1602.08471, 2016.
- Vidas Regelskis and Bart Vlaar, Quasitriangular coideal subalgebras of $U_q(\mathfrak {g})$ in terms of generalized Satake diagrams, Bull. Lond. Math. Soc. 52 (2020), no. 4, 693–715. MR 4171396, DOI 10.1112/blms.12360
- Vidas Regelskis and Bart Vlaar, Pseudo-symmetric pairs for Kac-Moody algebras, Preprint, arXiv:2108.00260, 2021.
- E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988), no. 10, 2375–2389. MR 953215, DOI 10.1088/0305-4470/21/10/015
- Noah Snyder and Peter Tingley, The half-twist for $U_q({\mathfrak {g}})$ representations, Algebra Number Theory 3 (2009), no. 7, 809–834. MR 2579396, DOI 10.2140/ant.2009.3.809
- Peter Tingley, A formula for the $R$-matrix using a system of weight preserving endomorphisms, Represent. Theory 14 (2010), 435–445. MR 2652074, DOI 10.1090/S1088-4165-2010-00378-7
- J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116 (French). MR 206117, DOI 10.1016/0021-8693(66)90053-6
Bibliographic Information
- Andrea Appel
- Affiliation: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy
- MR Author ID: 1269493
- ORCID: 0000-0002-6446-9305
- Email: andrea.appel@unipr.it
- Bart Vlaar
- Affiliation: Department of Mathematics, Heriot–Watt University, Edinburgh EH14 4AS, United Kingdom; and Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
- MR Author ID: 1025642
- ORCID: 0000-0002-0792-720X
- Email: vlaar@mpim-bonn.mpg.de
- Received by editor(s): September 7, 2020
- Received by editor(s) in revised form: May 2, 2022, and June 2, 2022
- Published electronically: July 19, 2022
- Additional Notes: The first author was supported in part by the ERC Grant 637618 and the Programme FIL of the University of Parma co-sponsored by Fondazione Cariparma. The second author was supported in part by the EPSRC Grant EP/R009465/1.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 764-824
- MSC (2020): Primary 81R10, 17B37; Secondary 17B67, 16T10
- DOI: https://doi.org/10.1090/ert/623
- MathSciNet review: 4454332