Theta constants associated to cubic threefolds
Authors:
Keiji Matsumoto and Tomohide Terasoma
Journal:
J. Algebraic Geom. 12 (2003), 741775
DOI:
https://doi.org/10.1090/S1056391103003485
Published electronically:
June 10, 2003
MathSciNet review:
1993763
Fulltext PDF
Abstract  References  Additional Information
Abstract: We construct automorphic forms on the 4dimensional complex ball which describe the inverse of a period map for marked cubic surfaces $X$ in terms of theta constants associated to the intermediate Jacobians of the triple coverings of the 3dimensional complex projective space branching along $X$.

[A]A Atlas of finite groups, Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A. Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, Eynsham, 1985.
[ACT1]ACT1 Allcock, D., Carlson, J.A. and Toledo, D., A complex hyperbolic structure for moduli space of cubic surfaces, C.R. Acad. Sci. Paris Sér. I Math. 326 (1998), 49–54.
[ACT2]ACT Allcock, D., Carlson, J.A. and Toledo, D., The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002), 659–724.
[AF]AF Allcock, D. and Freitag, E., Cubic surfaces and Borcherds products, Comment Math. Helv. 77 (2002), 270–296.
[CG]CG Clemens, C.H. and Griffiths, P.A. The intermediate Jacobian of the cubic threefold, Ann. Math. 95 (1969), 460–541.
[C]C Coble, A, Points sets and allied Cremona transformations I, II and III, Trans. AMS 16 (1915), 155–198, 17 (1916), 345–385 and 18 (1917), 331–372.
[DM]DM Deligne, P. and Mostow, G. D., Monodromy of hypergeometric functions and nonlattice integral monodromy, I.H.E.S. Publ. Math. 63 (1986), 5–89.
[DO]DO Dolgachev, I. and Ortland, D., Point sets in projective spaces and theta functions, Asterisque. 165 (1988).
[G]G van Geemen, B., A linear system on Naruki’s moduli space of marked cubic surfaces, Internat. J. Math. 13 (2002), 183–208.
[H]H Hunt, B. The geometry of some special arithmetic quotients, LNM. 1637, Springer, 1996.
[I]I Igusa, J., Theta functions, Springer, 1972.
[N]N Naruki, I., Cross ratio variety as a moduli space of cubic surfaces, Proc. London Math. Soc. 45 (1982), 1–30.
[Ma]Ma Matsumoto, K., Theta constants associated with the cyclic triple coverings of the complex projective line branching at six points, Publ. Res. Inst. Math. Sci. 37 (2001), 419–440.
[Mo]Mo Mostow, G. D., Generalized Picard lattices arising from halfintegral conditions, I.H.E.S. Publ. Math. 63 (1986), 91–106.
[Mu]Mu Mumford, D, Prym varieties I, Contributions to analysis (a collection of papers dedicated to Lipman Bers), 325–350, Academic Press, New York, 1974.
[MT]MT Matsumoto, K. and Terasoma, T., Comparison of the moduli spaces of cubic surfaces and certain branched coverings of the projective line, in preparation.
[P]Pic Picard, E., Sur les fonctions de deux variables indépendantes analogues aux fonctions modulaires, Acta Math. 2 (1883), 114–126.
[S]Shi Shiga, H., On the representation of Picard modular function by $\theta$ constants III, Publ. Res. Inst. Math. Sci. 24 (1988), 311–360.
[SY]SY Sasaki, T. and Yoshida, M. A system of differential equations in 4 variables of rank 5 invariant under the Weyl group of type $E_6$. Kobe J. Math. 17 (2000), 29–57.
[T]T Terada, T., Fonctions hypergéometriques $F_1$ et fonctions automorphes I, II, J. Math. Soc. Japan 35 (1983), 451–475; 37 (1985), 173–185.
[Y]Y Yoshida, M., A $W(E_6)$equivariant projective embedding of the moduli space of cubic surfaces, preprint (math.AG/0002102), Kyushu University Preprint Series in Mathematics 199926.
Additional Information
Keiji Matsumoto
Affiliation:
Division of Mathematics, Graduate School of Science, Hokkaido University, Sapporo, Japan
Email:
matsu@math.sci.hokudai.ac.jp
Tomohide Terasoma
Affiliation:
Department of Mathematical Science, University of Tokyo, Komaba, Meguro, Tokyo, Japan
Email:
terasoma@ms.utokyo.ac.jp
Received by editor(s):
May 18, 2001
Received by editor(s) in revised form:
March 25, 2002
Published electronically:
June 10, 2003