A canonical decomposition of generalized theta functions on the moduli stack of Gieseker vector bundles
Author:
Ivan Kausz
Journal:
J. Algebraic Geom. 14 (2005), 439-480
DOI:
https://doi.org/10.1090/S1056-3911-05-00407-8
Published electronically:
March 30, 2005
MathSciNet review:
2129007
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We use a Gieseker type degeneration of the moduli stack of vector bundles on a curve to prove a decomposition formula for generalized theta functions which is motivated by what in conformal field theory is called the factorization rule.
- Arnaud Beauville, Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 75–96. MR 1360497
- Arnaud Beauville and Yves Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), no. 2, 385–419. MR 1289330
- C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR 718125, DOI https://doi.org/10.1007/BFb0063234
- Ron Donagi and Loring W. Tu, Theta functions for ${\rm SL}(n)$ versus ${\rm GL}(n)$, Math. Res. Lett. 1 (1994), no. 3, 345–357. MR 1302649, DOI https://doi.org/10.4310/MRL.1994.v1.n3.a6
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- Gerd Faltings, A proof for the Verlinde formula, J. Algebraic Geom. 3 (1994), no. 2, 347–374. MR 1257326
- Gerd Faltings, Moduli-stacks for bundles on semistable curves, Math. Ann. 304 (1996), no. 3, 489–515. MR 1375622, DOI https://doi.org/10.1007/BF01446303
- Gerd Faltings, Finiteness of coherent cohomology for proper fppf stacks, J. Algebraic Geom. 12 (2003), no. 2, 357–366. MR 1949648, DOI https://doi.org/10.1090/S1056-3911-02-00321-1
- D. Gieseker, A degeneration of the moduli space of stable bundles, J. Differential Geom. 19 (1984), no. 1, 173–206. MR 739786
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI https://doi.org/10.7146/math.scand.a-12001
- Ivan Kausz, A modular compactification of the general linear group, Doc. Math. 5 (2000), 553–594. MR 1796449
[K2]degeneration I. Kausz: A Gieseker Type Degeneration of Moduli Stacks of Vector Bundles on Curves, math.AG/0201197. To appear in Transactions of the AMS.
[K3]cohomology I. Kausz: Global Sections of Line Bundles on a Wonderful Compactification of the General Linear Group. Preprint, 2003.
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927
- Yves Laszlo and Christoph Sorger, The line bundles on the moduli of parabolic $G$-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, 499–525 (English, with English and French summaries). MR 1456243, DOI https://doi.org/10.1016/S0012-9593%2897%2989929-6
- M. S. Narasimhan and T. R. Ramadas, Factorisation of generalised theta functions. I, Invent. Math. 114 (1993), no. 3, 565–623. MR 1244913, DOI https://doi.org/10.1007/BF01232680
- D. S. Nagaraj and C. S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves. II. Generalized Gieseker moduli spaces, Proc. Indian Acad. Sci. Math. Sci. 109 (1999), no. 2, 165–201. MR 1687729, DOI https://doi.org/10.1007/BF02841533
- P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978. MR 546290
- Christian Pauly, Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J. 84 (1996), no. 1, 217–235 (French). MR 1394754, DOI https://doi.org/10.1215/S0012-7094-96-08408-2
- T. R. Ramadas, Factorisation of generalised theta functions. II. The Verlinde formula, Topology 35 (1996), no. 3, 641–654. MR 1396770, DOI https://doi.org/10.1016/0040-9383%2895%2900032-1
- C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR 699278
- C. S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves, School on Algebraic Geometry (Trieste, 1999) ICTP Lect. Notes, vol. 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000, pp. 205–265. MR 1795864
- Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 0354651
- Christoph Sorger, La formule de Verlinde, Astérisque 237 (1996), Exp. No. 794, 3, 87–114 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95. MR 1423621
- Xiaotao Sun, Degeneration of moduli spaces and generalized theta functions, J. Algebraic Geom. 9 (2000), no. 3, 459–527. MR 1752012
- Xiaotao Sun, Degeneration of ${\rm SL}(n)$-bundles on a reducible curve, Algebraic geometry in East Asia (Kyoto, 2001) World Sci. Publ., River Edge, NJ, 2002, pp. 229–243. MR 2030457, DOI https://doi.org/10.1142/9789812705105_0010
- Xiaotao Sun, Moduli spaces of ${\rm SL}(r)$-bundles on singular irreducible curves, Asian J. Math. 7 (2003), no. 4, 609–625. MR 2074894, DOI https://doi.org/10.4310/AJM.2003.v7.n4.a10
- Constantin Teleman, Borel-Weil-Bott theory on the moduli stack of $G$-bundles over a curve, Invent. Math. 134 (1998), no. 1, 1–57. MR 1646586, DOI https://doi.org/10.1007/s002220050257
- Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 459–566. MR 1048605, DOI https://doi.org/10.2969/aspm/01910459
- Kenji Ueno, Introduction to conformal field theory with gauge symmetries, Geometry and physics (Aarhus, 1995) Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, 1997, pp. 603–745. MR 1423195
[B]B A. Beauville: Conformal blocks, fusion rules and the Verlinde formula. Israel Math. Conf. Proc. 9 (1996), 75–96.
[BL]BL A. Beauville, Y. Laszlo: Conformal blocks and generalized theta functions. Comm. Math. Phys. 164 (1994), no. 2, 385–419.
[CP]CP C. De Concini and C. Procesi: Complete Symmetric Varieties, Invariant theory (Montecatini, 1982), 1–44, Lecture Notes in Math., 996, Springer, Berlin-New York, 1983.
[DT]DT R. Donagi and L. W. Tu: Theta functions for SL$(n)$ versus GL$(n)$. Mathematical Research Letters 1, 345-357 (1994).
[EGA]EGA A. Grothendieck, worked out in collaboration with J. Dieudonné: Éléments de géométrie algébrique. Springer Verlag (1971) and Publications Mathématiques de l’I.H.E.S. No 8 (1961), 17 (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967). ; ; ; ; ;
[F1]F1 G. Faltings: A proof for the Verlinde formula. J. Algebraic Geom. 3 (1994), no. 2, 347-374.
[F2]F2 G. Faltings: Moduli-stacks for bundles on semistable curves. Math. Ann. 304 (1996), no. 3, 489-515.
[F3]F3 G. Faltings: Finiteness of coherent cohomology for proper fppf stacks. J. Algebraic Geometry 12 (2003) 357-366.
[G]Gieseker D. Gieseker: A degeneration of the moduli space of stable bundles. J. Differential Geom. 19 (1984), no. 1, 173-206.
[Kn]Knudsen F. F. Knudsen: The projectivity of the moduli space of stable curves, II: The stacks $M_{g,n}$. Math. Scand. 52 (1983), 161-199.
[K1]kgl I. Kausz: A Modular Compactification of the General Linear Group, Documenta Math. 5 (2000) 553-594.
[K2]degeneration I. Kausz: A Gieseker Type Degeneration of Moduli Stacks of Vector Bundles on Curves, math.AG/0201197. To appear in Transactions of the AMS.
[K3]cohomology I. Kausz: Global Sections of Line Bundles on a Wonderful Compactification of the General Linear Group. Preprint, 2003.
[LM]LM G. Laumon and L. Moret-Bailly: Champs algébriques. Ergebnisse der Mathematik und ihrer Grenszgebiete, 3. Folge. Volume 39. Springer Verlag (2000).
[LS]LS Y. Laszlo, Ch. Sorger: The line bundles on the moduli of parabolic $G$-bundles over curves and their sections. Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, 499-525.
[NR]NR M.S. Narasimhan,T.R. Ramadas: Factorisation of generalised theta functions I. Invent. Math. 114 (1993), no. 3, 565–623.
[NS]NS D.S. Nagaraj and C.S. Seshadri: Degenerations of the moduli spaces of vector bundles on curves II. Proc. Indian Acad. Sci. Math. Sci. 109 (1999), no 2, 165-201.
[N]Newstead P. E. Newstead: Introduction to moduli problems and orbit spaces. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 51 (1978).
[P]Pauly C. Pauly: Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J. 84 (1996), no. 1, 217–235.
[R]Ramadas T.R. Ramadas: Factorisation of generalised theta functions. II. The Verlinde formula. Topology 35 (1996), no. 3, 641–654.
[Se1]Seshadri1 C.S. Seshadri: Fibrés vectoriels sur les courbes algébriques. Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. Astérisque, 96. Société Mathématique de France, Paris, 1982.
[Se2]Seshadri2 C.S. Seshadri: Degenerations of the moduli spaces of vector bundles on curves. School on Algebraic Geometry (Trieste, 1999), 205–265, ICTP Lect. Notes, 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000.
[SGA I]SGA I A. Grothendieck: Revêtements étales et groupe fondamental (SGA 1). Springer Lecture Notes in Mathematics, Vol. 224. (1971).
[So]Sorger C. Sorger: La formule de Verlinde. Séminaire Bourbaki, Vol. 1994/95. Astérisque No. 237, (1996), Exp. No. 794, 3, 87–114.
[Sun1]Sun1 Xiaotao Sun: Degeneration of moduli spaces and generalized theta functions. J. Algebraic Geom. 9 (2000), no. 3, 459–527.
[Sun2]Sun2 Xiaotao Sun: Degeneration of SL(n)-bundles on a reducible curve. Algebraic geometry in East Asia (Kyoto, 2001) 229-243 (math.AG/0112072). World Sci. Publishing, River Edge, NJ, 2002.
[Sun3]Sun3 Xiaotao Sun: Moduli spaces of SL(r)-bundles on singular irreducible curves (math.AG/0303198). Asian J. Math. 7 (2003), 609–625.
[T]T C. Teleman: Borel-Weil-Bott theory on the moduli stack of $G$-bundles over a curve. Invent. Math. 134 (1998), no. 1, 1–57.
[TUY]TUY A. Tsuchiya, K. Ueno, Y. Yamada: Conformal field theory on universal family of stable curves with gauge symmetries. Integrable systems in quantum field theory and statistical mechanics, 459-566, Adv. Stud. Pure Math., 19, (1989).
[U]Ueno K. Ueno: Introduction to conformal field theory with gauge symmetries. Geometry and physics (Aarhus, 1995), 603-745, Lecture Notes in Pure and Appl. Math., 184, (1997).
Additional Information
Ivan Kausz
Affiliation:
NWF I - Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Email:
ivan.kausz@mathematik.uni-regensburg.de
Received by editor(s):
May 22, 2003
Received by editor(s) in revised form:
August 28, 2004, and February 7, 2005
Published electronically:
March 30, 2005
Additional Notes:
Partially supported by the DFG