The tautological rings of the moduli spaces of stable maps to flag varieties
Author:
Dragos Oprea
Journal:
J. Algebraic Geom. 15 (2006), 623-655
DOI:
https://doi.org/10.1090/S1056-3911-06-00452-8
Published electronically:
June 20, 2006
MathSciNet review:
2237264
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We show that the rational cohomology classes on the moduli spaces of genus zero stable maps to $SL$ flag varieties are tautological.
- Arnaud Beauville, Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 37–40 (French). MR 1351502
- K. Behrend, Cohomology of stacks, Intersection theory and moduli, ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 249–294. MR 2172499
- Michel Brion, Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 1–37. Notes by Alvaro Rittatore. MR 1649623
- Aaron Bertram, Georgios Daskalopoulos, and Richard Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996), no. 2, 529–571. MR 1320154, DOI https://doi.org/10.1090/S0894-0347-96-00190-7
- Gilberto Bini and Claudio Fontanari, On the cohomology of $\overline {\scr M}_{0,n}(\Bbb P^1,d)$, Commun. Contemp. Math. 4 (2002), no. 4, 751–761. MR 1938492, DOI https://doi.org/10.1142/S021919970200083X
- K. Behrend and A. O’Halloran, On the cohomology of stable map spaces, Invent. Math. 154 (2003), no. 2, 385–450. MR 2013785, DOI https://doi.org/10.1007/s00222-003-0308-5
[C]C J. Cox, A presentation for the Chow ring $A^*(\bar {M}_{0,2}(\mathbb P^1,2))$, Ph.D. Thesis, 2005, math.AG/0505112.
- Ionuţ Ciocan-Fontanine, The quantum cohomology ring of flag varieties, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2695–2729. MR 1487610, DOI https://doi.org/10.1090/S0002-9947-99-02230-8
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
[Dh]Dh A. Dhillon, On the cohomology of moduli of vector bundles, AG/0310299.
- Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595–634. MR 1614555, DOI https://doi.org/10.1007/s002220050214
- Geir Ellingsrud and Stein Arild Strømme, Towards the Chow ring of the Hilbert scheme of ${\bf P}^2$, J. Reine Angew. Math. 441 (1993), 33–44. MR 1228610
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, DOI https://doi.org/10.2307/2946631
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI https://doi.org/10.1090/pspum/062.2/1492534
- E. Getzler, Operads and moduli spaces of genus $0$ Riemann surfaces, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 199–230. MR 1363058, DOI https://doi.org/10.1007/978-1-4612-4264-2_8
- V. A. Ginzburg, Equivariant cohomology and Kähler geometry, Funktsional. Anal. i Prilozhen. 21 (1987), no. 4, 19–34, 96 (Russian). MR 925070
- T. Graber and R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), no. 1, 93–109. MR 1960923, DOI https://doi.org/10.1307/mmj/1049832895
[Gr]Gr A. Grothendieck, Quelques proprietes fondamentales en theorie des intersections, Seminaire Chevalley Anneaux de Chow et applications, 1959.
- Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI https://doi.org/10.1090/S0002-9947-1992-1034665-0
[Kim]Kim B. Kim, Quot schemes for flags and Gromov invariants for flag varieties, preprint, AG/9512003.
- Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, vol. 47, American Mathematical Society, Providence, RI, 1999. MR 1702284
[MM]MM A. Mustata, A. Mustata, On the Chow ring of $\overline M_{0,m}(n, d)$, preprint, AG/0507464.
[O1]O1 D. Oprea, Tautological classes on the moduli spaces of stable maps to $\mathbb {P}^r$ via torus actions, to appear.
- Dragos Oprea, Divisors on the moduli spaces of stable maps to flag varieties and reconstruction, J. Reine Angew. Math. 586 (2005), 169–205. MR 2180604, DOI https://doi.org/10.1515/crll.2005.2005.586.169
- Rahul Pandharipande, The Chow ring of the nonlinear Grassmannian, J. Algebraic Geom. 7 (1998), no. 1, 123–140. MR 1620694
- Rahul Pandharipande, Intersections of $\mathbf Q$-divisors on Kontsevich’s moduli space $\overline M_{0,n}(\mathbf P^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1481–1505. MR 1407707, DOI https://doi.org/10.1090/S0002-9947-99-01909-1
- R. Pandharipande, Three questions in Gromov-Witten theory, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 503–512. MR 1957060
- J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525–563. MR 0485870
- Stein Arild Strømme, On parametrized rational curves in Grassmann varieties, Space curves (Rocca di Papa, 1985) Lecture Notes in Math., vol. 1266, Springer, Berlin, 1987, pp. 251–272. MR 908717, DOI https://doi.org/10.1007/BFb0078187
- Bernd Siebert and Gang Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997), no. 4, 679–695. MR 1621570, DOI https://doi.org/10.4310/AJM.1997.v1.n4.a2
- Bernd Siebert, An update on (small) quantum cohomology, Mirror symmetry, III (Montreal, PQ, 1995) AMS/IP Stud. Adv. Math., vol. 10, Amer. Math. Soc., Providence, RI, 1999, pp. 279–312. MR 1673112
[T]T B. Totaro, Chow groups, Chow cohomology, and linear varieties, Journal of Algebraic Geometry, to appear.
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI https://doi.org/10.1007/BF01388892
- Angelo Vistoli, Chow groups of quotient varieties, J. Algebra 107 (1987), no. 2, 410–424. MR 885804, DOI https://doi.org/10.1016/0021-8693%2887%2990096-2
[B]B A. Beauville, Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis, 37–40, Bombay, 1995.
[Be]Be K. Behrend, Cohomology of stacks, Intersection theory and moduli, 249–294 (electronic) ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004.
[Br]Br M. Brion, Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, 1997), 1–37, Kluwer Acad. Publ., Dordrecht, 1998.
[BDW]BDW A. Bertram, G. Daskalopoulos, R. Wentworth, Gromov Invariants for Holomorphic Maps from Riemann Surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996), no. 2, 529–571.
[BF]BF G. Bini, C. Fontanari, On the cohomology of $\overline {M}_{0,n}(\mathbb P^1, d)$, Commun. Contemp. Math 4 (2002), 751–761.
[BH]BH K. Behrend, A. O’Halloran, On the cohomology of stable map spaces, Invent. Math. 154 (2003), no. 2, 385–450.
[C]C J. Cox, A presentation for the Chow ring $A^*(\bar {M}_{0,2}(\mathbb P^1,2))$, Ph.D. Thesis, 2005, math.AG/0505112.
[CF]CF I. Ciocan-Fontanine, The quantum cohomology ring of flag varieties, Transactions of the AMS, 351 (7) (1999), 2695–2729.
[D]D P. Deligne, Théorie de Hodge. II, III, Publ. Math. I.H.E.S, 40 (1972), 44(1974), 5–58 and 5–77. ;
[Dh]Dh A. Dhillon, On the cohomology of moduli of vector bundles, AG/0310299.
[EG]EG D. Edidin, W. Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595–634.
[ES]ES G. Ellingsrud, S. A. Stromme, Towards the Chow ring of the Hilbert scheme of $\mathbb P^2$, J. Reine Angew. Math. 441 (1993), 33–44.
[FM]FM W. Fulton, R. MacPherson, A compactification of configuration spaces, Ann. of Math., 139 (1994), 183–225.
[FP]FP W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, 45-96, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.
[Ge]zero E. Getzler, Operads and moduli spaces of genus $0$ Riemann surfaces, The moduli space of curves, 199–230, Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995.
[Gi]Gi V. Ginzburg, Equivariant cohomology and Kähler geometry, Funktsional. Anal. i Prilozhen. 21 (1987), no. 4, 19–34, 96.
[GP]taut T. Graber, R. Pandharipande, Construction of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), no. 1, 93–109.
[Gr]Gr A. Grothendieck, Quelques proprietes fondamentales en theorie des intersections, Seminaire Chevalley Anneaux de Chow et applications, 1959.
[Gr2]Gr2 A. Grothendieck, Le groupe de Brauer II. Dix exposes sur la cohomologie de schemas, North Holland, 1968.
[K]K S. Keel, Intersection theory on the moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc, 330 (1992), no. 2, 545–574.
[Kim]Kim B. Kim, Quot schemes for flags and Gromov invariants for flag varieties, preprint, AG/9512003.
[M]M Y. Manin, Frobenius manifolds, quantum cohomology and moduli spaces, A.M.S Colloquim Publications, vol. 47, 1999.
[MM]MM A. Mustata, A. Mustata, On the Chow ring of $\overline M_{0,m}(n, d)$, preprint, AG/0507464.
[O1]O1 D. Oprea, Tautological classes on the moduli spaces of stable maps to $\mathbb {P}^r$ via torus actions, to appear.
[O2]O2 D. Oprea, Divisors on the moduli spaces of stable maps to flag varieties and reconstruction, Journal für die reine und angewandte Mathematik, 586 (2005).
[Pa1]chow R. Pandharipande, The Chow Ring of the nonlinear Grassmannian, J. Algebraic Geom. 7 (1998), no. 1, 123–140.
[Pa2]divisors R. Pandharipande, Intersection of Q-divisors on Kontsevich’s Moduli Space ${\overline M}_{0,n}(\mathbb {P}^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1481–1505.
[Pa3]three R. Pandharipande, Three questions in Gromov-Witten theory, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 503–512.
[S]S J. Steenbrink, Mixed Hodge Structure on the Vanishing Cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Olso, 1976), 525–563.
[St]quot S. Stromme, On parametrized rational curves in Grassmann varieties, Space curves (Rocca di Papa, 1985), 251–272, Lecture Notes in Math, 1266, Berlin-New York, 1987.
[STi]STi B. Siebert, G. Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997), no. 4, 679–695.
[Si]Si B. Siebert, An update on the (small) quantum cohomology, Proceedings of the conference on Geometry and Physics (D.H. Phong, L. Vinet, S.T. Yau eds.), Montreal 1995, International Press 1998.
[T]T B. Totaro, Chow groups, Chow cohomology, and linear varieties, Journal of Algebraic Geometry, to appear.
[V1]V1 A. Vistoli, Intersection theory on algebraic stacks and their moduli spaces, Invent. Math. 97 (1989), 613–670.
[V2]V2 A. Vistoli, Chow groups of quotient varieties, J. Algebra 107 (1987), 410–424.
Additional Information
Dragos Oprea
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Address at time of publication:
Department of Mathematics, Stanford University, 450 Sera Mall, Stanford, California 94305
MR Author ID:
734182
Email:
oprea@alum.mit.edu
Received by editor(s):
January 12, 2005
Received by editor(s) in revised form:
January 4, 2006
Published electronically:
June 20, 2006