$\operatorname {SL}(2)$-orbit theorem for degeneration of mixed Hodge structure
Authors:
Kazuya Kato, Chikara Nakayama and Sampei Usui
Journal:
J. Algebraic Geom. 17 (2008), 401-479
DOI:
https://doi.org/10.1090/S1056-3911-07-00486-9
Published electronically:
October 30, 2007
MathSciNet review:
2395135
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Cattani, Kaplan and Schmid (1986) established the $\operatorname {SL}(2)$-orbit theorem in several variables for the degeneration of polarized Hodge structure. The aim of the present paper is to generalize it for the degeneration of mixed Hodge structure whose graded quotients by the weight filtration are polarized. As an application, we obtain a mixed Hodge version of an estimate of the Hodge metric for the degeneration of polarized Hodge structure.
References
- Armand Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). MR 0244260
- A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491. MR 387495, DOI https://doi.org/10.1007/BF02566134
- Eduardo Cattani and Aroldo Kaplan, Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Invent. Math. 67 (1982), no. 1, 101–115. MR 664326, DOI https://doi.org/10.1007/BF01393374
- Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid, Degeneration of Hodge structures, Ann. of Math. (2) 123 (1986), no. 3, 457–535. MR 840721, DOI https://doi.org/10.2307/1971333
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- Osamu Fujino, Higher direct images of log canonical divisors, J. Differential Geom. 66 (2004), no. 3, 453–479. MR 2106473
- Taro Fujisawa, Limits of Hodge structures in several variables, Compositio Math. 115 (1999), no. 2, 129–183. MR 1668986, DOI https://doi.org/10.1023/A%3A1000642525573
- P. A. Griffiths, Periods of integrals on algebraic manifolds, I, II, Amer. J. Math. 90 (1968), 568–626; 805–865.
- Masaki Kashiwara, The asymptotic behavior of a variation of polarized Hodge structure, Publ. Res. Inst. Math. Sci. 21 (1985), no. 4, 853–875. MR 817170, DOI https://doi.org/10.2977/prims/1195178935
- Masaki Kashiwara, A study of variation of mixed Hodge structure, Publ. Res. Inst. Math. Sci. 22 (1986), no. 5, 991–1024. MR 866665, DOI https://doi.org/10.2977/prims/1195177264
- Masaki Kashiwara and Takahiro Kawai, The Poincaré lemma for variations of polarized Hodge structure, Publ. Res. Inst. Math. Sci. 23 (1987), no. 2, 345–407. MR 890924, DOI https://doi.org/10.2977/prims/1195176545
- Kazuya Kato, Toshiharu Matsubara, and Chikara Nakayama, Log $C^\infty $-functions and degenerations of Hodge structures, Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, pp. 269–320. MR 1971519, DOI https://doi.org/10.2969/aspm/03610269
- Kazuya Kato and Sampei Usui, Borel-Serre spaces and spaces of ${\rm SL}(2)$-orbits, Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, pp. 321–382. MR 1971520, DOI https://doi.org/10.2969/aspm/03610321
- ---, Classifying spaces of degenerating polarized Hodge structures, to appear in Ann. of Math. Studies, Princeton Univ. Press.
- Gregory J. Pearlstein, Variations of mixed Hodge structure, Higgs fields, and quantum cohomology, Manuscripta Math. 102 (2000), no. 3, 269–310. MR 1777521, DOI https://doi.org/10.1007/PL00005852
- Gregory J. Pearlstein, Degenerations of mixed Hodge structure, Duke Math. J. 110 (2001), no. 2, 217–251. MR 1865240, DOI https://doi.org/10.1215/S0012-7094-01-11022-3
- Gregory Pearlstein, ${\rm SL}_2$-orbits and degenerations of mixed Hodge structure, J. Differential Geom. 74 (2006), no. 1, 1–67. MR 2260287
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, DOI https://doi.org/10.2977/prims/1195171082
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI https://doi.org/10.1007/BF01389674
- Masa-Hiko Sait\B{o}, Yuji Shimizu, and Sampei Usui, Variation of mixed Hodge structure and the Torelli problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 649–693. MR 946252, DOI https://doi.org/10.2969/aspm/01010649
- Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257. MR 429885, DOI https://doi.org/10.1007/BF01403146
- Joseph Steenbrink and Steven Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489–542. MR 791673, DOI https://doi.org/10.1007/BF01388729
- Sampei Usui, Variation of mixed Hodge structure arising from family of logarithmic deformations. II. Classifying space, Duke Math. J. 51 (1984), no. 4, 851–875. MR 771384, DOI https://doi.org/10.1215/S0012-7094-84-05137-8
References
- A. Borel, Introduction aux groupes arithmétiques, Hermann, Paris, 1969. MR 0244260 (39:5577)
- A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491. MR 0387495 (52:8337)
- E. Cattani and A. Kaplan, Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Invent. Math. 67 (1982), 101–115. MR 664326 (84a:32046)
- E. Cattani, A. Kaplan and W. Schmid, Degeneration of Hodge structures, Ann. of Math. 123 (1986), 457–535. MR 840721 (88a:32029)
- P. Deligne, Théorie de Hodge, II, Publ. Math., Inst. Hautes Études Sci. 40 (1971), 5–57. MR 0498551 (58:16653a)
- ---, La conjecture de Weil. II, Publ. Math., Inst. Hautes Études Sci. 52 (1980), 137–252. MR 601520 (83c:14017)
- O. Fujino, Higher direct images of log canonical divisors, J. Differential Geom. 66 (2004), 453–479. MR 2106473 (2005i:14017)
- T. Fujisawa, Limits of Hodge structures in several variables, Compositio Math. 115 (1999), 129–183. MR 1668986 (99m:14019)
- P. A. Griffiths, Periods of integrals on algebraic manifolds, I, II, Amer. J. Math. 90 (1968), 568–626; 805–865.
- M. Kashiwara, The asymptotic behavior of a variation of polarized Hodge structure, Publ. Res. Inst. Math. Sci., Kyoto Univ. 21 (1985), 853–875. MR 817170 (87h:32049)
- ---, A study of variation of mixed Hodge structure, Publ. Res. Inst. Math. Sci., Kyoto Univ. 22 (1986), 991–1024. MR 866665 (89i:32050)
- M. Kashiwara and T. Kawai, The Poincaré lemma for variations of polarized Hodge structure, Publ. Res. Inst. Math. Sci., Kyoto Univ. 23 (1987), 345–407. MR 890924 (89g:32035)
- K. Kato, T. Matsubara and C. Nakayama, Log $C^{\infty }$-functions and degenerations of Hodge structures, Advanced Studies in Pure Math. 36: Algebraic Geometry 2000, Azumino, (2002), 269–320. MR 1971519 (2004i:32023)
- K. Kato and S. Usui, Borel-Serre spaces and spaces of SL(2)-orbits, Advanced Studies in Pure Math. 36: Algebraic Geometry 2000, Azumino, (2002), 321–382. MR 1971520 (2004f:14021)
- ---, Classifying spaces of degenerating polarized Hodge structures, to appear in Ann. of Math. Studies, Princeton Univ. Press.
- G. Pearlstein, Variations of mixed Hodge structure, Higgs fields, and quantum cohomology, Manuscripta Math. 102 (2000), 269–310. MR 1777521 (2001m:32033)
- ---, Degenerations of mixed Hodge structure, Duke Math. J. 110 (2001), 217–251. MR 1865240 (2002h:14014)
- ---, $SL_{2}$-orbits and degenerations of mixed Hodge structure, J. Differential Geom. 74 (2006), 1–67. MR 2260287
- M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Kyoto Univ. 26 (1990), 221–333. MR 1047415 (91m:14014)
- W. Schmid, Variation of Hodge structure: The singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 0382272 (52:3157)
- M.-H. Saito, Y. Shimizu and S. Usui, Variation of mixed Hodge structure and the Torelli problem, Advanced Studies in Pure Math. 10: Algebraic Geometry, Sendai, 1985 (1987), 649–693. MR 946252 (89j:32037)
- J. H. M. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1976), 229–257. MR 0429885 (55:2894)
- J. H. M. Steenbrink and S. Zucker, Variation of mixed Hodge structure I, Invent. Math. 80 (1985), 489–542. MR 791673 (87h:32050a)
- S. Usui, Variation of mixed Hodge structure arising from family of logarithmic deformations II: Classifying space, Duke Math. J. 51-4 (1984), 851–875. MR 771384 (86h:14005)
Additional Information
Kazuya Kato
Affiliation:
Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
Email:
kzkt@math.kyoto-u.ac.jp
Chikara Nakayama
Affiliation:
Department of Mathematics, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan
Email:
cnakayam@math.titech.ac.jp
Sampei Usui
Affiliation:
Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
Email:
usui@math.sci.osaka-u.ac.jp
Received by editor(s):
March 18, 2006
Received by editor(s) in revised form:
April 12, 2007
Published electronically:
October 30, 2007
Additional Notes:
Partly supported by the Grants-in-Aid for Scientific Research (B) 16340005, and (B) 15340009, the Ministry of Education, Culture, Sports, Science and Technology, Japan