A non-Archimedean analogue of the Hodge-$\mathcal {D}$-conjecture for products of elliptic curves
Author:
Ramesh Sreekantan
Journal:
J. Algebraic Geom. 17 (2008), 781-798
DOI:
https://doi.org/10.1090/S1056-3911-08-00477-3
Published electronically:
March 4, 2008
MathSciNet review:
2424927
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In this paper we show that the map \[ \partial :CH^2(E_1 \times E_2,1)\otimes \mathbb {Q} \longrightarrow PCH^1(\mathcal {X}_v)\] is surjective, where $E_1$ and $E_2$ are two non-isogenous semistable elliptic curves over a local field, $CH^2(E_1 \times E_2,1)$ is one of Bloch’s higher Chow groups and $PCH^1(\mathcal {X}_v)$ is a certain subquotient of a Chow group of the special fibre $\mathcal {X}_{v}$ of a semi-stable model $\mathcal {X}$ of $E_1 \times E_2$. On one hand, this can be viewed as a non-Archimedean analogue of the Hodge-$\mathcal {D}$-conjecture of Beilinson - which is known to be true in this case by the work of Chen and Lewis (J. Algebraic Geom. 14 (2005), 213–240), and on the other, an analogue of the works of Speiß ($K$-Theory 17 (1999), 363–383), Mildenhall (Duke Math. J. 67 (1992), 387–406) and Flach (Invent. Math. 109 (1992), 307–327) in the case when the elliptic curves have split multiplicative reduction.
References
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238 (Russian). MR 760999
- S. Bloch and D. Grayson, $K_2$ and $L$-functions of elliptic curves: computer calculations, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 79–88. MR 862631, DOI https://doi.org/10.1090/conm/055.1/862631
- S. Bloch, H. Gillet, and C. Soulé, Non-Archimedean Arakelov theory, J. Algebraic Geom. 4 (1995), no. 3, 427–485. MR 1325788
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI https://doi.org/10.1016/0001-8708%2886%2990081-2
- Xi Chen and James D. Lewis, The Hodge-$\scr D$-conjecture for $K3$ and abelian surfaces, J. Algebraic Geom. 14 (2005), no. 2, 213–240. MR 2123228, DOI https://doi.org/10.1090/S1056-3911-04-00390-X
- Caterina Consani, Double complexes and Euler $L$-factors, Compositio Math. 111 (1998), no. 3, 323–358. MR 1617133, DOI https://doi.org/10.1023/A%3A1000362027455
- Caterina Consani, The local monodromy as a generalized algebraic correspondence, Doc. Math. 4 (1999), 65–108. With an appendix by Spencer Bloch. MR 1677651
- Gerhard Frey and Ernst Kani, Curves of genus $2$ covering elliptic curves and an arithmetical application, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 153–176. MR 1085258
- Matthias Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), no. 2, 307–327. MR 1172693, DOI https://doi.org/10.1007/BF01232029
- Uwe Jannsen, Deligne homology, Hodge-${\scr D}$-conjecture, and motives, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 305–372. MR 944998
- Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124
- Yu. I. Manin, Three-dimensional hyperbolic geometry as $\infty $-adic Arakelov geometry, Invent. Math. 104 (1991), no. 2, 223–243. MR 1098608, DOI https://doi.org/10.1007/BF01245074
- Stephen J. M. Mildenhall, Cycles in a product of elliptic curves, and a group analogous to the class group, Duke Math. J. 67 (1992), no. 2, 387–406. MR 1177312, DOI https://doi.org/10.1215/S0012-7094-92-06715-9
- Stefan J. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom. 6 (1997), no. 3, 513–543. MR 1487225
- A. N. Paršin, Minimal models of curves of genus $2$, and homomorphisms of abelian varieties defined over a field of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 67–109 (Russian). MR 0316456
- Dinakar Ramakrishnan, Regulators, algebraic cycles, and values of $L$-functions, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 183–310. MR 991982, DOI https://doi.org/10.1090/conm/083/991982
- C. Soulé, Groupes de Chow et $K$-théorie de variétés sur un corps fini, Math. Ann. 268 (1984), no. 3, 317–345 (French). MR 751733, DOI https://doi.org/10.1007/BF01457062
- Michael Spiess, On indecomposable elements of $K_1$ of a product of elliptic curves, $K$-Theory 17 (1999), no. 4, 363–383. MR 1706121, DOI https://doi.org/10.1023/A%3A1007739216643
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI https://doi.org/10.2307/1970722
- Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257. MR 429885, DOI https://doi.org/10.1007/BF01403146
References
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238. MR 760999 (86h:11103)
- S. Bloch and D. Grayson, $K_ 2$ and $L$-functions of elliptic curves: computer calculations, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 79–88. MR 862631 (88f:11061)
- S. Bloch, H. Gillet, and C. Soulé, Non-Archimedean Arakelov theory, J. Algebraic Geom. 4 (1995), no. 3, 427–485. MR 1325788 (96g:14019)
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815 (88f:18010)
- Xi Chen and James D. Lewis, The Hodge-${\mathcal D}$-conjecture for $K3$ and abelian surfaces, J. Algebraic Geom. 14 (2005), no. 2, 213–240. MR 2123228 (2005m:14008)
- Caterina Consani, Double complexes and Euler $L$-factors, Compositio Math. 111 (1998), no. 3, 323–358. MR 1617133 (99b:11065)
- ---, The local monodromy as a generalized algebraic correspondence, Doc. Math. 4 (1999), 65–108 (electronic). MR 1677651 (2000e:14008)
- Gerhard Frey and Ernst Kani, Curves of genus $2$ covering elliptic curves and an arithmetical application, Arithmetic algebraic geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 153–176. MR 1085258 (91k:14014)
- Matthias Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), no. 2, 307–327. MR 1172693 (93g:11066)
- Uwe Jannsen, Deligne homology, Hodge-${\mathcal D}$-conjecture, and motives, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 305–372. MR 944998 (89h:14016)
- Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124 (89m:11059)
- Yu. I. Manin, Three-dimensional hyperbolic geometry as $\infty$-adic Arakelov geometry, Invent. Math. 104 (1991), no. 2, 223–243. MR 1098608 (92f:14019)
- Stephen J. M. Mildenhall, Cycles in a product of elliptic curves, and a group analogous to the class group, Duke Math. J. 67 (1992), no. 2, 387–406. MR 1177312 (93g:14014)
- Stefan J. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom. 6 (1997), no. 3, 513–543. MR 1487225 (99k:14016)
- A. N. Paršin, Minimal models of curves of genus $2$, and homomorphisms of abelian varieties defined over a field of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 67–109. MR 0316456 (47:5003)
- Dinakar Ramakrishnan, Regulators, algebraic cycles, and values of $L$-functions, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 183–310. MR 991982 (90e:11094)
- C. Soulé, Groupes de Chow et $K$-théorie de variétés sur un corps fini, Math. Ann. 268 (1984), no. 3, 317–345. MR 751733 (86k:14017)
- Michael Spiess, On indecomposable elements of $K_ 1$ of a product of elliptic curves, $K$-Theory 17 (1999), no. 4, 363–383. MR 1706121 (2000f:14013)
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 0236190 (38:4488)
- Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257. MR 0429885 (55:2894)
Additional Information
Ramesh Sreekantan
Affiliation:
School of Mathematics, Tata Insitute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005 India
Address at time of publication:
TIFR Centre for Applicable Mathematics, P.O. Bag No 03, Sharadanagar, Chikkabommasundara, Bangalore, 560 065 India
Email:
ramesh@math.tifr.res.in
Received by editor(s):
October 14, 2006
Received by editor(s) in revised form:
January 22, 2007
Published electronically:
March 4, 2008