Toric vector bundles, branched covers of fans, and the resolution property
Author:
Sam Payne
Journal:
J. Algebraic Geom. 18 (2009), 1-36
DOI:
https://doi.org/10.1090/S1056-3911-08-00485-2
Published electronically:
April 22, 2008
MathSciNet review:
2448277
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We associate to each toric vector bundle on a toric variety $X(\Delta )$ a “branched cover” of the fan $\Delta$ together with a piecewise-linear function on the branched cover. This construction generalizes the usual correspondence between toric Cartier divisors and piecewise-linear functions. We apply this combinatorial geometric technique to investigate the existence of resolutions of coherent sheaves by vector bundles, using singular nonquasiprojective toric threefolds as a testing ground. Our main new result is the construction of complete toric threefolds that have no nontrivial toric vector bundles of rank less than or equal to three. The combinatorial geometric sections of the paper, which develop a theory of cone complexes and their branched covers, can be read independently.
References
- D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2, 241–273. MR 1738451, DOI https://doi.org/10.1007/s002229900024
- Annette A’Campo-Neuen and Jürgen Hausen, Toric prevarieties and subtorus actions, Geom. Dedicata 87 (2001), no. 1-3, 35–64. MR 1866842, DOI https://doi.org/10.1023/A%3A1012091302595
- Markus Eikelberg, The Picard group of a compact toric variety, Results Math. 22 (1992), no. 1-2, 509–527. MR 1174922, DOI https://doi.org/10.1007/BF03323103
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- Osamu Fujino and Sam Payne, Smooth complete toric threefolds with no nontrivial nef line bundles, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 174–179 (2006). MR 2196723
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- Akio Hattori and Mikiya Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003), no. 1, 1–68. MR 1955796
- L. Illusie, Existence de résolutions globales, Théorie des intersections et théorème de Riemann-Roch, SGA 6 1966/67, Springer Lect. Notes Math., vol. 225, 1971, pp. 160–221.
- Tamafumi Kaneyama, Torus-equivariant vector bundles on projective spaces, Nagoya Math. J. 111 (1988), 25–40. MR 961215, DOI https://doi.org/10.1017/S0027763000000982
- Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725, DOI https://doi.org/10.2307/2374941
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
- A. A. Klyachko, Equivariant bundles over toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5, 1001–1039, 1135 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 2, 337–375. MR 1024452, DOI https://doi.org/10.1070/IM1990v035n02ABEH000707
- A. S. Merkur′ev, Comparison of the equivariant and the standard $K$-theory of algebraic varieties, Algebra i Analiz 9 (1997), no. 4, 175–214 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 9 (1998), no. 4, 815–850. MR 1604004
- Rick Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995. MR 1326604
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- Sam Payne, Equivariant Chow cohomology of toric varieties, Math. Res. Lett. 13 (2006), no. 1, 29–41. MR 2199564, DOI https://doi.org/10.4310/MRL.2006.v13.n1.a3
- ---, Moduli of toric vector bundles, to appear in Compositio Math.
- Stefan Schröer and Gabriele Vezzosi, Existence of vector bundles and global resolutions for singular surfaces, Compos. Math. 140 (2004), no. 3, 717–728. MR 2041778, DOI https://doi.org/10.1112/S0010437X0300071X
- Burt Totaro, The resolution property for schemes and stacks, J. Reine Angew. Math. 577 (2004), 1–22. MR 2108211, DOI https://doi.org/10.1515/crll.2004.2004.577.1
References
- D. Abramovich and K. Karu, Weak semistable reduction in characteristic $0$, Invent. Math. 139 (2000), no. 2, 241–273. MR 1738451 (2001f:14021)
- A. A’Campo-Neuen and J. Hausen, Toric prevarieties and subtorus actions, Geom. Dedicata 87 (2001), no. 1-3, 35–64. MR 1866842 (2002h:14085)
- Markus Eikelberg, The Picard group of a compact toric variety, Results Math. 22 (1992), no. 1-2, 509–527. MR 1174922 (93g:14060)
- D. Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
- O. Fujino and S. Payne, Smooth complete toric threefolds with no nontrivial nef line bundles, Proc. Japan Acad. Ser. A 81 (2005), no. 10, 174–179. MR 2196723 (2007d:14094)
- W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. MR 1234037 (94g:14028)
- ---, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323 (99d:14003)
- A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003), no. 1, 1–68. MR 1955796 (2004d:53103)
- L. Illusie, Existence de résolutions globales, Théorie des intersections et théorème de Riemann-Roch, SGA 6 1966/67, Springer Lect. Notes Math., vol. 225, 1971, pp. 160–221.
- T. Kaneyama, Torus-equivariant vector bundles on projective spaces, Nagoya Math. J. 111 (1988), 25–40. MR 961215 (89i:14012)
- K. Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725 (95g:14056)
- G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lect. Notes in Math., vol. 339, Springer-Verlag, Berlin, 1973. MR 0335518 (49:299)
- A. Klyachko, Equivariant vector bundles on toral varieties, Math. USSR-Izv. 35 (1990), no. 2, 337–375. MR 1024452 (91c:14064)
- A. Merkurjev, Comparison of the equivariant and the standard $K$-theory of algebraic varieties, Algebra i Analiz 9 (1997), no. 4, 175–214. MR 1604004 (99d:19003)
- R. Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995. MR 1326604 (96f:14029)
- C. Okonek, M. Schneider, and H. Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910 (81b:14001)
- S. Payne, Equivariant Chow cohomology of toric varieties, Math. Res. Lett. 13 (2006), no. 1, 29–41. MR 2199564 (2007f:14052)
- ---, Moduli of toric vector bundles, to appear in Compositio Math.
- S. Schröer and G. Vezzosi, Existence of vector bundles and global resolutions for singular surfaces, Compos. Math. 140 (2004), no. 3, 717–728. MR 2041778 (2005c:14048)
- B. Totaro, The resolution property for schemes and stacks, J. Reine Angew. Math. 577 (2004), 1–22. MR 2108211 (2005j:14002)
Additional Information
Sam Payne
Affiliation:
Stanford University, Department of Mathematics, Building 380, Stanford, California 94305
MR Author ID:
652681
Email:
spayne@stanford.edu
Received by editor(s):
September 26, 2006
Received by editor(s) in revised form:
March 14, 2007
Published electronically:
April 22, 2008
Additional Notes:
The author was supported by a Graduate Research Fellowship from the NSF